SiT8003XT Low Power Ultra Thin Oscillator

Features, Benefits and Applications

- The world's thinnest oscillator, 0.25 mm (typical) height
- Typical current consumption of 3.2 mA in active mode
- 1 110 MHz frequency range
- LVCMOS/LVTTL compatible output
- Standby current as low as 0.5 µA
- Fast resume time of 3.0 ms typical
- Standby or output enable modes
- Outstanding mechanical robustness for portable applications
- All-silicon device with outstanding reliability of 2 FIT (10x improvement over quartz-based devices), enhancing system mean-time-to-failure (MTBF)
- Ultra short lead time
- Ideal for ultra thin applications: High Capacilty (HC) SIM cards, Smart cards, Near Field Communications (NFC), SD cards, multi-chip modules (MCM) and System-in-Package (SiP)

Specifications

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Output Frequency Range	f	1	-	110	MHz		
Frequency Tolerance	F_tol	-100	-	+100	PPM	Inclusive of: Initial stability, operating temperature, rated power, supply voltage change, load change, shock and vibration.	
Aging	Ag	-1.0	-	1.0	PPM	1st year at 25°C	
Operating Temperature Range	T_use	-20	-	+70	°C	Extended Commercial	
		-40	-	+85	°C	Industrial	
Supply Voltage	Vdd	1.71	1.8	1.89	V		
		2.25	2.5	2.75	V		
	İ	2.52	2.8	3.08	V	-	
	İ	2.97	3.3	3.63	V	-	
Current Consumption	Idd	-	3.7	4.1	mA	No load condition, f = 20 MHz, Vdd = 2.5 V, 2.8 V or 3.3 V	
		-	3.2	3.5	mA	No load condition, f = 20 MHz, Vdd = 1.8 V	
Standby Current	I_std	-	2.4	4.3	μA	ST = GND, Vdd = 3.3 V, Output is Weakly Pulled Down	
-	_	-	1.2	2.2	μA	ST = GND, Vdd = 2.5 or 2.8 V, Output is Weakly Pulled Down	
		-	0.4	0.8	μA	ST = GND, Vdd = 1.8 V, Output is Weakly Pulled Down	
Duty Cycle	DC	45	50	55	%	All Vdds. f <= 75 MHz	
		40	50	60	%	All Vdds. f > 75 MHz	
Rise/Fall Time	Tr, Tf	-	1	2	ns	20% - 80% Vdd=2.5 V, 2.8 V or 3.3 V, 15 pf load	
	İ	-	1.3	2.5	ns	20% - 80% Vdd=1.8V , 15p f load	
Output Voltage High	VOH	90%	-	-	Vdd	IOH = -4 mA (Vdd = 3.3 V) IOH = -3 mA (Vdd = 2.8 V and Vdd = 2.5 V) IOH = -2 mA (Vdd = 1.8 V)	
Output Voltage Low	VOL	-	_	10%	Vdd	IOL = 4 mA (Vdd = 3.3 V) IOL = 3 mA (Vdd = 2.8 V and Vdd = 2.5 V) IOL = 2 mA (Vdd = 1.8 V)	
Output Load	Ld	-	-	15	pF	At maximum frequency and supply voltage. Contact SiTime for higher output load option	
Input Voltage High	VIH	70%	-	-	Vdd	Pin 1, OE or ST	
Input Voltage Low	VIL	-	-	30%	Vdd	Pin 1, OE or ST	
Startup Time	T_osc	-	-	10	ms	Measured from the time Vdd reaches its rated minimum value	
Resume Time	T_resume	-	3.0	3.8	ms	Measured from the time ST pin crosses 50% threshold	
RMS Period Jitter	T_jitt	-	-	4.0	ps	f = 75 MHz, Vdd = 2.5 V, 2.8 V or 3.3 V	
		-	-	5.5	ps	f = 75 MHz, Vdd = 1.8 V	
RMS Phase Jitter (random)	T_phj	-	0.6	-	ps	f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz, VDD = 2.5 V, 2.8 V, or 3.3 V	
		-	0.8	-	ps	f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz, VDD = 1.8 V	

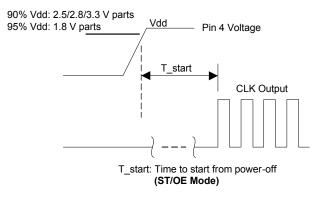
Specifications (Cont.)

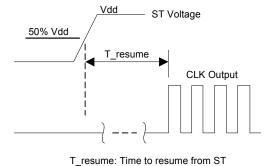
Pin Description Tables

Pin #1 Functionality			
OE			
H or Open ^[1] : specified frequency output			
L: output is high impedance			
ST			
H or Open: specified frequency output			
L: output is low level (weak pull down) Oscillation stops			

Pin Map			
Pin	Connection		
1	OE/ST		
2	GND		
3	CLK		
4	VDD		

Absolute Maximum Ratings

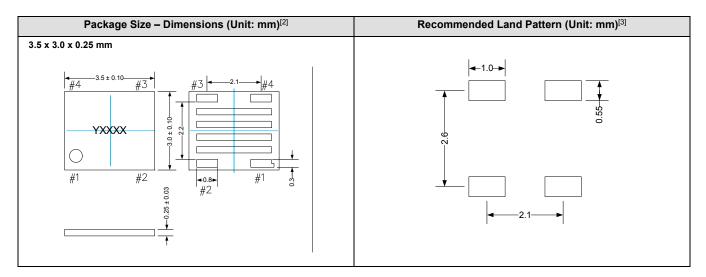

Attempted operation outside the absolute maximum ratings of the part may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.


Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
VDD	-0.5	4	V
Electrostatic Discharge	-	6000	V
Theta JA (with copper plane on VDD and GND)	-	75	°C/W
Theta JC (with PCB traces of 0.010 inch to all pins)	-	24	°C/W
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C
Number of Program Writes	-	1	NA
Program Retention over -40 to 125°C, Process, VDD (0 to 3.65 V)	1,000+	-	years

Environmental Compliance

Parameter	Condition/Test Method		
Mechanical Shock	MIL-STD-883F, Method 2002		
Mechanical Vibration	MIL-STD-883F, Method 2007		
Temperature Cycle	JESD22, Method A104		
Solderability	MIL-STD-883F, Method 2003		
Moisture Sensibility Level	MSL1 @ 260°C		

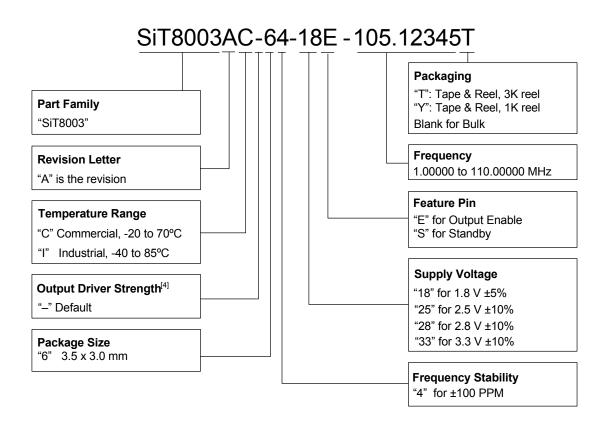
Startup and Resume Timing Diagram


(ST Mode Only)

Note:

1. In 1.8 V mode, a resistor of <100 k Ω between OE pin and VDD is recommended.

Dimensions and Land Patterns


Notes:

2. Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
3. A capacitor of value 0.1µF between Vdd and GND is recommended.

Part No. Guide - How to Order

The Part No. Guide is for reference only. For real-time customization and exact part number, use the SiTime Part Number Generator.

Notes:

4. Contact SiTime for different drive strength options for driving higher loads or reducing EMI.

© SiTime Corporation 2010. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any sitime product and any product documentation. products sold by sitme are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. all sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard Clock Oscillators category:

Click to view products by SiTime manufacturer:

Other Similar products are found below :

EP1400SJTSC-125.000M 601137 601252 CSX750FBC-24.000M-UT CSX750FBC-33.333M-UT CSX750FCC-3.6864M-UT F335-12 F335-25 DSC506-03FM2 ASA-20.000MHZ-L-T ASA-25.000MHZ-L-T ASA-27.000MHZ-L-T ASV-20.000MHZ-LR-T ECS-2018-160-BN-TR EL13C7-H2F-125.00M MXO45HS-2C-66.6666MHZ SiT1602BI-22-33E-50.000000E SIT8003AC-11-33S-2.04800X SiT8256AC-23-33E-156.250000X SIT8918AA-11-33S-50.000000G SM4420TEV-40.0M-T1K F335-24 F335-40 F335-50 F535L-10 F535L-12 F535L-16 F535L-27 F535L-48 PE7744DW-100.0M CSX750FBC-20.000M-UT CSX-750FBC33333000T CSX750FBC-4.000M-UT CSX750FBC-7.3728M-UT CSX750FBC-8.000M-UT CSX-750FCC14745600T CSX750FCC-16.000M-UT CSX-750FCC40000000T CSX750FCC-4.000M-UT ASA-22.000MHZ-L-T ASA-26.000MHZ-L-T ASA-40.000MHZ-L-T ASA-48.000MHZ-L-T ASA-60.000MHZ-L-T ASF1-3.686MHZ-N-K-S XO37CTECNA10M XO57CRECNA16M XO57CTECNA3M6864 XO57CTECNA4M9152 DSC400-0333Q0032KE1-EVB