4Gb DDR3 SDRAM

Lead-Free\&Halogen-Free

(RoHS Compliant) H5TQ4G83CFR-xxC H5TQ4G83CFR-xxI H5TQ4G83CFR-xxL H5TQ4G83CFR-xxJ H5TQ4G63CFR-xxC H5TQ4G63CFR-xxI H5TQ4G63CFR-xxL H5TQ4G63CFR-xxJ

[^0]
Revision History

Revision No.	History	Draft Date	Remark
0.1	Initial Version	Feb. 2014	
0.2	PKG Dimensions Update	Apr. 2014	Page 32,33
0.3	Operating Frequency Modify	July. 2014	Page 4, Note1
0.4	Input/Output Capacitance Tyop Correct	July. 2014	Page 25
1.0	Official Datasheet with IDD Spec	Oct. 2014	Page 24
1.1	PKG Dimension Correct	Dec. 2014	Page 33
1.2	PKG Dimension Correct	Mar. 2015	Page 32,33
1.3	PKG Dimension Correct (INDEX MARK)	Jun. 2015	Page 32

Description

The H5TQ4G83CFR-xxC,H5TQ4G63CFR-xxC, H5TQ4G83CFR-xxI, H5TQ4G63CFR-xxI, H5TQ4G83CFR-xxL, H5TQ4G63CFR-xxL,H5TQ4G83CFR-xxJ and H5TQ4G63CFR-xxJ are a 4,294,967,296-bit CMOS Double Data Rate III (DDR3) Synchronous DRAM, ideally suited for the main memory applications which requires large memory density and high bandwidth. SK Hynix 4Gb DDR3 SDRAMs offer fully synchronous operations referenced to both rising and falling edges of the clock. While all addresses and control inputs are latched on the rising edges of the CK (falling edges of the CK), Data, Data strobes and Write data masks inputs are sampled on both rising and falling edges of it. The data paths are internally pipelined and 8 -bit prefetched to achieve very high bandwidth.

Device Features and Ordering I nformation

FEATURES

- $\mathrm{VDD}=\mathrm{VDDQ}=1.5 \mathrm{~V}+/-0.075 \mathrm{~V}$
- Fully differential clock inputs ($\mathrm{CK}, \overline{\mathrm{CK}}$) operation
- Differential Data Strobe (DQS, $\overline{\mathrm{DQS}})$
- On chip DLL align DQ, DQS and $\overline{\mathrm{DQS}}$ transition with CK transition
- DM masks write data-in at the both rising and falling edges of the data strobe
- All addresses and control inputs except data, data strobes and data masks latched on the rising edges of the clock
- Programmable CAS latency 5, 6, 7, 8, 9, 10, 11, 13 and 14 supported
- Programmable additive latency $0, \mathrm{CL}-1$, and CL-2 supported
- Programmable CAS Write latency $(C W L)=5,6,7,8$ 9 and 10
- Programmable burst length $4 / 8$ with both nibble sequential and interleave mode
- BL switch on the fly
- 8banks
- Average Refresh Cycle (Tcase of0 ${ }^{\circ} \mathrm{C} \sim 95^{\circ} \mathrm{C}$)
$-7.8 \mu \mathrm{~s}$ at $0^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
$-3.9 \mu \mathrm{~s}$ at $85^{\circ} \mathrm{C} \sim 95^{\circ} \mathrm{C}$
Commercial Temperature($0^{\circ} \mathrm{C} \sim 95^{\circ} \mathrm{C}$)
Industrial Temperature($-40^{\circ} \mathrm{C} \sim 95^{\circ} \mathrm{C}$)
- JEDEC standard 78ball FBGA(x8), 96ball FBGA (x16)
- Driver strength selected by EMRS
- Dynamic On Die Termination supported
- Asynchronous RESET pin supported
- ZQ calibration supported
- TDQS (Termination Data Strobe) supported (x8 only)
- Write Levelization supported
- 8 bit pre-fetch
* This product in compliance with the RoHS directive.

ORDERI NG I NFORMATI ON

Part No.	Configuration	Power Consumption	Temperature	Package
H5TQ4G83CFR-*xxC	$512 \mathrm{M} \times 8$	Normal Consumption	Commercial	78ball FBGA
H5TQ4G83CFR-*xxl			Industrial	
H5TQ4G83CFR-*xxL		Low Power Consumption (IDD6 Only)	Commercial	
H5TQ4G83CFR-*xxJ			Industrial	
H5TQ4G63CFR-*xxC	$256 \mathrm{M} \times 16$	Normal Consumption	Commercial	96ball FBGA
H5TQ4G63CFR-*xxI			Industrial	
H5TQ4G63CFR-*xxL		Low Power Consumption (IDD6 Only)	Commercial	
H5TQ4G63CFR-*xxJ			Industrial	

* xx means Speed Bin Grade

OPERATI NG FREQUENCY

| Speed
 Grade
 (Marking) | | | | | | | | | | | FL5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | CL6

* Note1: In case of 1.5 V P/N (H5TQ4G8(6)3CFR), -RDC covers Lower speed of -PBC and -H9C

SK hynix

x8 Package Ball out (Top view): 78ball FBGA Package

	1	2	3	4	5	6	7	8	9	
A	VSS	VDD	NC				NF/TDQS	VSS	VDD	A
B	VSS	VSSQ	DQ0				DM/TDQS	VSSQ	VDDQ	B
C	VDDQ	DQ2	DQS				DQ1	DQ3	VSSQ	C
D	VSSQ	DQ6	DQS				VDD	VSS	VSSQ	D
E	VREFDQ	VDDQ	DQ4				DQ7	DQ5	VDDQ	E
F	NC	VSS	RAS				CK	VSS	NC	F
G	ODT	VDD	CAS				CK	VDD	CKE	G
H	NC	CS	WE				A10/AP	ZQ	NC	H
J	VSS	BAO	BA2				A15	VREFCA	VSS	J
K	VDD	A3	A0				A12/BC	BA1	VDD	K
L	VSS	A5	A2				A1	A4	VSS	L
M	VDD	A7	A9				A11	A6	VDD	M
N	VSS	RESET	A13				A14	A8	VSS	N
	1	2	3	4	5	6	7	8	9	

$\begin{array}{lll}123 & 78 & 9\end{array}$

x16 Package Ball out (Top view): 96ball FBGA Package

	1	2	3	4	5	6	7	8	9	
A	VDDQ	DQU5	DQU7				DQU4	VDDQ	VSS	A
B	VSSQ	VDD	VSS				DQSU	DQU6	VSSQ	B
C	VDDQ	DQU3	DQU1				DQSU	DQU2	VDDQ	C
D	VSSQ	VDDQ	DMU				DQU0	VSSQ	VDD	D
E	VSS	VSSQ	DQL0				DML	VSSQ	VDDQ	E
F	VDDQ	DQL2	DQSL				DQL1	DQL3	VSSQ	F
G	VSSQ	DQL6	$\overline{\text { DQSL }}$				VDD	VSS	VSSQ	G
H	VREFDQ	VDDQ	DQL4				DQL7	DQL5	VDDQ	H
J	NC	VSS	$\overline{\text { RAS }}$				CK	VSS	NC	J
K	ODT	VDD	CAS				$\overline{\text { CK }}$	VDD	CKE	K
L	NC	$\overline{\mathrm{CS}}$	WE				A10/AP	ZQ	NC	L
M	VSS	BAO	BA2				NC	VREFCA	VSS	M
N	VDD	A3	A0				A12/BC	BA1	VDD	N
P	VSS	A5	A2				A1	A4	VSS	P
R	VDD	A7	A9				A11	A6	VDD	R
T	VSS	RESET	A13				A14	A8	VSS	T
	1	2	3	4	5	6	7	8	9	

123
 789

Pin Functional Description

Symbol	Type	Function
$\mathrm{CK}, \overline{\mathrm{CK}}$	Input	Clock: CK and $\overline{\mathrm{CK}}$ are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of $\overline{\mathrm{CK}}$.
CKE, (CKEO), (CKE1)	Input	Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, $\overline{C K}$, ODT and CKE, are disabled during powerdown. Input buffers, excluding CKE, are disabled during Self-Refresh.
$\begin{gathered} \overline{\mathrm{CS}},(\overline{\mathrm{CS}} 0), \\ (\overline{\mathrm{CS}} 1),(\overline{\mathrm{CS}} 2), \\ (\overline{\mathrm{CS} 3)} \end{gathered}$	Input	Chip Select: All commands are masked when $\overline{\mathrm{CS}}$ is registered HIGH. $\overline{\mathrm{CS}}$ provides for external Rank selection on systems with multiple Ranks. $\overline{\mathrm{CS}}$ is considered part of the command code.
$\begin{aligned} & \text { ODT, (ODT0), } \\ & \text { (ODT1) } \end{aligned}$	Input	On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is only applied to each DQ, DQS, $\overline{\mathrm{DQS}}$ and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode Register A11=1 in MR1) signal for $\times 4 / \times 8$ configurations. For x16 configuration, ODT is applied to each DQ, DQSU, $\overline{\mathrm{DQSU}}, \mathrm{DQSL}$, DQSL, DMU, and DML signal. The ODT pin will be ignored if MR1 is programmed to disable ODT.
$\frac{\overline{\mathrm{RAS}}}{\overline{\mathrm{CAS}},}$	Input	Command Inputs: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ and $\overline{\mathrm{WE}}$ (along with $\overline{\mathrm{CS}}$) define the command being entered.
DM, (DMU), (DML)	Input	Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For $x 8$ device, the function of DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.
BAO-BA2	Input	Bank Address Inputs: BAO - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS cycle.
A0-A15	Input	Address Inputs: Provide the row address for Active commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and $\mathrm{A} 12 / \overline{\mathrm{BC}}$ have additional functions, see below). The address inputs also provide the op-code during Mode Register Set commands.
A10 / AP	Input	Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
A12 / $\overline{\mathrm{BC}}$	Input	Burst Chop: A12 / $\overline{\mathrm{BC}}$ is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.

Symbol	Type	Function
$\overline{\text { RESET }}$	Input	Active Low Asynchronous Reset: Reset is active when $\overline{\text { RESET }}$ is LOW, and inactive when $\overline{\text { RESET }}$ is HIGH. $\overline{\text { RESET }}$ must be HIGH during normal operation. $\overline{\text { RESET }}$ is a CMOS rail-to-rail signal with DC high and low at 80% and 20% of $V_{D D}$, i.e. 1.20 V for DC high and 0.30V for DC low.
DQ	Input / Output	Data Input/ Output: Bi-directional data bus.
$\begin{aligned} & \text { DQU, } \frac{\mathrm{DQL}}{} \\ & \mathrm{DQS}, \mathrm{DQS}, \\ & \text { DQSU, } \overline{\mathrm{DQSU}}, \\ & \mathrm{DQSL}, \overline{\mathrm{DQSL}} \end{aligned}$	Input / Output	Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. The data strobe DQS, DQSL, and DQSU are paired with differential signals $\overline{\mathrm{DQS}}, \overline{\mathrm{DQSL}}$, and $\overline{\mathrm{DQSU}}$, respectively, to provide differential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and does not support single-ended.
TDQS, $\overline{\text { TDQS }}$	Output	Termination Data Strobe: TDQS/ $\overline{T D Q S}$ is applicable for x8 DRAMs only. When enabled via Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function on TDQS/ $\overline{T D Q S}$ that is applied to DQS/ $\overline{\operatorname{DQS}}$. When disabled via mode register A11 $=0$ in MR1, DM/TDQS will provide the data mask function and $\overline{T D Q S}$ is not used. $\times 4 / \times 16$ DRAMs must disable the TDQS function via mode register A11 $=0$ in MR1.
NC		No Connect: No internal electrical connection is present.
NF		No Function
$V_{\text {DDQ }}$	Supply	DQ Power Supply: $1.5 \mathrm{~V}+/-0.075 \mathrm{~V}$
$V_{\text {SSQ }}$	Supply	DQ Ground
$V_{D D}$	Supply	Power Supply: $1.5 \mathrm{~V}+/-0.075 \mathrm{~V}$
$V_{S S}$	Supply	Ground
$V_{\text {REFDQ }}$	Supply	Reference voltage for DQ
$V_{\text {REFCA }}$	Supply	Reference voltage for CA
ZQ	Supply	Reference Pin for ZQ calibration

Note:
Input only pins (BAO-BA2, A0-A15, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{CS}}, \mathrm{CKE}, \mathrm{ODT}$, DM, and $\overline{\mathrm{RESET}}$) do not supply termination.

ROW AND COLUMN ADDRESS TABLE

4Gb

Configuration	$\mathbf{5 1 2 M b} \mathbf{x} \mathbf{8}$	$\mathbf{2 5 6 M b} \mathbf{~ 1 6}$
\# of Banks	8	8
Bank Address	$\mathrm{BA} 0-\mathrm{BA} 2$	$\mathrm{BAO}-\mathrm{BA} 2$
Auto precharge	$\mathrm{A} 10 / \mathrm{AP}$	$\mathrm{A} 10 / \mathrm{AP}$
BL switch on the fly	$\mathrm{A} 12 / \mathrm{BC}$	$\mathrm{A} 12 / \mathrm{BC}$
Row Address	$\mathrm{A} 0-\mathrm{A} 15$	$\mathrm{~A} 0-\mathrm{A} 14$
Column Address	$\mathrm{A} 0-\mathrm{A} 9$	$\mathrm{~A} 0-\mathrm{A} 9$
Page size ${ }^{1}$	1 KB	2 KB

Notel: Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered. Page size is per bank, calculated as follows:
page size $=\mathbf{2}^{\text {COLBITS }} \boldsymbol{*}$ ORG $\div 8$
where COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits

Absolute Maximum Ratings

Absolute Maximum DC Ratings

Absolute Maximum DC Ratings

Symbol	Parameter	Rating	Units	Notes
VDD	Voltage on VDD pin relative to Vss	$-0.4 \mathrm{~V} \sim 1.80 \mathrm{~V}$	V	1,3
VDDQ	Voltage on VDDQ pin relative to Vss	$-0.4 \mathrm{~V} \sim 1.80 \mathrm{~V}$	V	1,3
$\mathrm{~V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	Voltage on any pin relative to VSS	$-0.4 \mathrm{~V} \sim 1.80 \mathrm{~V}$	V	1
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	-55 to +100	${ }^{\circ} \mathrm{C}$	1,2

Notes:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300 mV of each other at all times; and VREF must not be greater than 0.6 XVDDQ , When VDD and VDDQ are less than 500 mV ; VREF may be equal to or less than 300 mV .

DRAM Component Operating Temperature Range

Temperature Range

Symbol	Parameter	Rating	Units	Notes
$\mathrm{T}_{\text {OPER }}$	Normal Operating Temperature Range	0 to 85	${ }^{\circ} \mathrm{C}$	1,2
	Extended Temperature Range	85 to 95	${ }^{\circ} \mathrm{C}$	1,4
	Industrial Temperature Range	-40 to 95	${ }^{\circ} \mathrm{C}$	$1,3,4$

Notes:

1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between $0-850 \mathrm{C}$ under all operating conditions.
3. The Industrial Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between $-40-850 \mathrm{C}$ under all operating conditions.
4. Some applications require operation of the DRAM in the Extended Temperature Range between 850 C and 950 C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to $3.9 \mu \mathrm{~s}$.
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0 b and MR2 A7 $=1 \mathrm{~b}$).

AC \& DC Operating Conditions

Recommended DC Operating Conditions

Recommended DC Operating Conditions

Symbol	Parameter	Rating			Units	Notes
		Min.	Typ.	Max.		
VDD	Supply Voltage	1.425	1.500	1.575	1,2	
VDDQ	Supply Voltage for Output	1.425	1.500	1.575	V	1,2

Notes:

1. Under all conditions, VDDQ must be less than or equal to VDD
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.

I DD and IDDQ Specification Parameters and Test Conditions IDD and IDDQ Measurement Conditions

In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 1. shows the setup and test load for IDD and IDDQ measurements.

- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents.
- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents.
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated 10 power to actual 10 power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB.

For IDD and IDDQ measurements, the following definitions apply:

- "0" and "LOW" is defined as VIN $<=\mathrm{V}_{\text {ILAC(max) }}$.
- " 1 " and "HIGH" is defined as VIN $>=\mathrm{V}_{\text {IHAC(max) }}$.
- "MID_LEVEL" is defined as inputs are VREF = VDD/2.
- Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.
- Basic IDD and IDDQ Measurement Conditions are described in Table 2.
- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.
- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting
RON = RZQ/7 (34 Ohm in MR1);
Qoff $=0_{B}$ (Output Buffer enabled in MR1);
RTT_Nom = RZQ/6 (40 Ohm in MR1);
RTT_Wr = RZQ/2 (120 Ohm in MR2);
TDQS Feature disabled in MR1
- Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
- Define $D=\{\overline{\mathrm{CS}}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}\}:=\{\mathrm{HIGH}$, LOW, LOW, LOW $\}$
- Define $\overline{\mathrm{D}}=\{\overline{\mathrm{CS}}, \overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}\}:=\{\mathrm{HIGH}, \mathrm{HIGH}, \mathrm{HIGH}, \mathrm{HIGH}\}$

Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements [Note: DIMM level Output test load condition may be different from above]

Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement

Table 1 -Timings used for IDD and I DDQ Measurement-Loop Patterns

Symbol		DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	DDR3-2133	Unit
		7-7-7	9-9-9	11-11-11	13-13-13	14-14-14	
$t_{\text {CK }}$		1.875	1.5	1.25	1.07	0.935	ns
CL		7	9	11	13	14	nCK
$n_{\text {RCD }}$		7	9	11	13	14	nCK
$n_{\text {RC }}$		27	33	39	45	50	nCK
$n_{\text {RAS }}$		20	24	28	32	36	nCK
$n_{\text {RP }}$		7	9	11	13	14	nCK
$n_{\text {FAW }}$	1KB page size	20	20	24	26	27	nCK
	2KB page size	27	30	32	33	38	nCK
$n_{\text {RRD }}$	1KB page size	4	4	5	5	6	nCK
	$\begin{aligned} & \text { 2KB page } \\ & \text { size } \end{aligned}$	6	5	6	6	7	nCK
$n_{\text {RFC }}-512 \mathrm{Mb}$		48	60	72	85	97	nCK
$n_{\text {RFC }}{ }^{-1 \mathrm{~Gb}}$		59	74	88	103	118	nCK
$n_{\text {RFC }}-2 \mathrm{~Gb}$		86	107	128	150	172	nCK
$n_{\text {RFC }}{ }^{-4 \mathrm{~Gb}}$		139	174	208	243	279	nCK
$n_{\text {RFC }}{ }^{-8 \mathrm{~Gb}}$		187	234	280	328	375	nCK

Table 2 -Basic I DD and IDDQ Measurement Conditions

Symbol	Description
	Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; $\overline{\mathrm{CS}}$: High between ACT	
and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO:	
MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see	
Table 3); Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }) ; ~ O D T ~ S i g n a l: ~ s t a b l e ~ a t ~ 0 ; ~ P a t t e r n ~ D e t a i l s: ~}$	
	see Table 3.

Symbol	Description
/DD1	Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: $8^{\mathrm{a})}$; AL: 0; $\overline{\mathrm{CS}}$: High between ACT, RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: $0,0,1,1,2,2, \ldots$ (see Table 4); Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0; Pattern Details: see Table 4.
/DD2N	Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: $8^{\text {a) } ; ~ A L: ~ 0 ; ~} \overline{\mathrm{CS}}$: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0; Pattern Details: see Table 5.
/DD2NT	Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: $8^{\mathrm{a})}$; AL: 0; $\overline{\mathrm{CS}}$: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: toggling according to Table 6; Pattern Details: see Table 6.
/DD2PO	Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: see Table 1; BL: $8^{\text {a) }}$; AL: 0; $\overline{\mathrm{CS}}$: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc)
/DD2P1	Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: see Table 1; BL: $8^{\text {a) }}$; AL: 0; $\overline{\mathrm{CS}}$: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit ${ }^{\mathrm{C}}$)
/DD2Q	Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: $8^{\text {a) } ; ~ A L: ~ 0 ; ~} \overline{C S}$: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0

Symbol	Description
/DD3N	Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: $8^{\mathrm{a})}$; AL: 0; $\overline{\mathrm{CS}}$: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0; Pattern Details: see Table 5.
/DD3P	Active Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 1; BL: $8^{\text {a) }}$; AL: 0; $\overline{\mathrm{CS}}$: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0
/DD4R	Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: $8^{\text {a) }}$; AL: 0; $\overline{\mathrm{CS}}$: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: $0,0,1,1,2,2, \ldots$ (see Table 7); Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0; Pattern Details: see Table 7.
/DD4w	Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8^{a}; AL: 0; $\overline{\mathrm{CS}}$: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: $0,0,1,1,2,2, \ldots$ (see Table 8); Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at HIGH; Pattern Details: see Table 8.
/DD5B	Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: $8^{\text {a) }}$; AL: 0; $\overline{C S}$: High between REF; Command, Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0; Pattern Details: see Table 9.
/DD6	Self-Refresh Current: Normal Temperature Range $\boldsymbol{T}_{\text {CASE: }} 0-8{ }^{\circ}{ }^{\circ} \mathrm{C}$; Auto Self-Refresh (ASR): Disabled ${ }^{\mathrm{d}}$; Self-Refresh Temperature Range (SRT): Normale ${ }^{\mathrm{e}}$; CKE: Low; External clock: Off; CK and $\overline{\mathrm{CK}}$: LOW; CL: see Table 1; BL: 8^{a}; AL: 0; $\overline{\mathrm{CS}}, \mathrm{Command}$, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: MID_LEVEL

Symbol	Description
/DD6ET	Self-Refresh Current: Extended Temperature Range $\boldsymbol{T}_{\text {CASE: }}$ 0-95 ${ }^{\circ} \mathrm{C}$; Auto Self-Refresh (ASR): Disabled ${ }^{\text {d) }}$; Self-Refresh Temperature Range (SRT): Extendede ${ }^{\mathrm{e}}$; CKE: Low; External clock: Off; CK and $\overline{\mathrm{CK}}$: LOW; CL: see Table 1; BL: $8^{\mathrm{a})}$; AL: 0; $\overline{\mathrm{CS}}$, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: MID LEVEL
/DD7	Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: $8^{\text {a) , f) }}$; AL: CL1; $\overline{\mathrm{CS}}$: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table 10; Data IO: read data burst with different data between one burst and the next one according to Table 10; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0 , $1, \ldots 7$) with different addressing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registers ${ }^{\text {b }}$; ODT Signal: stable at 0; Pattern Details: see Table 10.

a) Burst Length: BL8 fixed by MRS: set MRO $A[1,0]=00 B$
b) Output Buffer Enable: set MR1 $\mathrm{A}[12]=0 \mathrm{~B}$; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] $=011 \mathrm{~B}$; RTT_Wr enable: set MR2 A[10,9] = 10B
c) Precharge Power Down Mode: set MRO A12 $=0 B$ for Slow Exit or MR0 A12 $=1 B$ for Fast Exit
d) Auto Self-Refresh (ASR): set MR2 A6 $=0 B$ to disable or $1 B$ to enable feature
e) Self-Refresh Temperature Range (SRT): set MR2 A7 $=0 B$ for normal or $1 B$ for extended temperature range
f) Read Burst Type: Nibble Sequential, set MR0 A[3] = OB

Table 3 - I DDO Measurement-Loop Patterna)

$\begin{aligned} & \text { IV } \\ & \text { U } \end{aligned}$	$\underset{\sim}{\mathbf{U}}$	$\begin{aligned} & \text { 응 } \\ & 0 \\ & \text { 10 } \\ & \text { un } \end{aligned}$			19	$\left\lvert\, \begin{aligned} & \text { n } \\ & \text { ç } \end{aligned}\right.$	\|y	$1 \underset{3}{3}$	$\stackrel{5}{0}$		$\begin{aligned} & \text { 글 } \\ & \text { in } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \underset{4}{4} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{0}{\mathbf{~}} \end{aligned}$	$$	$\xrightarrow{\substack{\text { ® }}}$	Data ${ }^{\text {b }}$
$\begin{aligned} & \text { O} \\ & \text { = } \\ & \hline 0 \\ & \hline 0 \end{aligned}$		0	0	ACT	0	0	1	1	0	0	00	0	0	0	0	-
			1,2	D, D	1	0	0	0	0	0	00	0	0	0	0	-
			3,4	$\overline{\mathrm{D}}, \overline{\mathrm{D}}$	1	1	1	1	0	0	00	0	0	0	0	-
			...	repeat pattern $1 . .44$ until nRAS - 1, truncate if necessary												
			nRAS	PRE	0	0	1	0	0	0	00	0	0	0	0	-
			\ldots	repeat pattern 1... 4 until nRC - 1, truncate if necessary												
			1*nRC+0	ACT	0	0	1	1	0	0	00	0	0	F	0	-
			1*nRC+1, 2	D, D	1	0	0	0	0	0	00	0	0	F	0	-
			1*nRC+3, 4	$\overline{\mathrm{D}}, \overline{\mathrm{D}}$	1	1	1	1	0	0	00	0	0	F	0	-
			\ldots	repeat pattern 1...4 until $1 * n R C+n R A S-1$, truncate if necessary												
			1*nRC+nRAS	PRE	0	0	1	0	0	0	00	0	0	F	0	-
			...	repeat pattern $1 . .4$ until $2 * n R C-1$, truncate if necessary												
		1	2*nRC	repeat Sub-Loop 0, use BA[2:0] = 1 instead												
		2	4*nRC	repeat Sub-Loop 0, use BA[2:0] = 2 instead												
		3	6*nRC	repeat Sub-Loop 0, use BA[2:0] = 3 instead												
		4	8* RRC	repeat Sub-Loop 0, use BA[2:0] $=4$ instead												
		5	10*nRC	repeat Sub-Loop 0, use BA[2:0] $=5$ instead												
		6	12*nRC	repeat Sub-Loop 0, use BA[2:0] $=6$ instead												
		7	14*nRC	repeat Sub-Loop 0, use BA[2:0] = 7 instead												

a) DM must be driven LOW all the time. DQS, $\overline{\mathrm{DQS}}$ are MID-LEVEL.
b) $D Q$ signals are MID-LEVEL.

Table 4 - I DD1 Measurement-Loop Pattern ${ }^{\text {a) }}$

a) DM must be driven LOW all the time. DQS, $\overline{\mathrm{DQS}}$ are used according to RD Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL.

Table 5 －IDD2N and IDD3N Measurement－Loop Pattern ${ }^{\text {a）}}$

$\underset{\text { IV }}{\substack{y}}$		$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \text { ì } \end{aligned}$	$\frac{\frac{1}{\Phi}}{\vdots}$	ס त © E 0	10	$\mid \underset{凹}{\unlhd}$	\|y	$\stackrel{~ 山 ~}{3}$			$\begin{aligned} & \text { 글 } \\ & \text { ה̈ } \\ & \text { 岂 } \end{aligned}$	$\begin{gathered} \underset{\sim}{\mathbf{O}} \\ \underset{4}{4} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \text { ör } \end{aligned}$	$$	＇or	Data ${ }^{\text {b }}$
$\begin{aligned} & \text { 아 } \\ & \text { ㄷ } \\ & \text { 앙 } \end{aligned}$	둔TU00	0	0	D	1	0	0	0	0	0	0	0	0	0	0	－
			1	D	1	0	0	0	0	0	0	0	0	0	0	－
			2	$\overline{\mathrm{D}}$	1	1	1	1	0	0	0	0	0	F	0	－
			3	$\overline{\mathrm{D}}$	1	1	1	1	0	0	0	0	0	F	0	－
		1	4－7	repeat Sub－Loop 0，use BA［2：0］＝ 1 instead												
		2	8－11	repeat Sub－Loop 0，use BA［2：0］$=2$ instead												
		3	12－15	repeat Sub－Loop 0，use BA［2：0］$=3$ instead												
		4	16－19	repeat Sub－Loop 0，use BA［2：0］$=4$ instead												
		5	20－23	repeat Sub－Loop 0，use BA［2：0］$=5$ instead												
		6	24－17	repeat Sub－Loop 0，use BA［2：0］$=6$ instead												
		7	28－31	repeat Sub－Loop 0，use BA［2：0］＝ 7 instead												

a）DM must be driven LOW all the time．DQS，$\overline{\mathrm{DQS}}$ are MID－LEVEL．
b）$D Q$ signals are MID－LEVEL．
Table 6 －IDD2NT and IDDQ2NT Measurement－Loop Pattern ${ }^{\text {a）}}$

	$\underset{\mathbf{U}}{\underset{\mathbf{v}}{\prime}}$	$\begin{aligned} & \text { 응 } \\ & 0 \\ & \frac{1}{5} \\ & \frac{1}{5} \end{aligned}$	$\frac{\frac{1}{\varrho}}{\frac{0}{u}}$		10	$\stackrel{y}{c}$	ly	$1 \mathrm{~m}$	$\stackrel{5}{\circ}$			울	$\begin{aligned} & \text { T } \\ & \frac{\mathbf{1}}{\mathbf{0}} \end{aligned}$	$$	O N ¢	Data ${ }^{\text {b }}$
		0	0	D	1	0	0	0	0	0	0	0	0	0	0	－
			1	D	1	0	0	0	0	0	0	0	0	0	0	－
			2	$\overline{\mathrm{D}}$	1	1	1	1	0	0	0	0	0	F	0	－
			3	$\overline{\mathrm{D}}$	1	1	1	1	0	0	0	0	0	F	0	－
		1	4－7	repeat Sub－Loop 0，but ODT $=0$ and $\mathrm{BA}[2: 0]=1$												
		2	8－11	repeat Sub－Loop 0，but ODT $=1$ and $\mathrm{BA}[2: 0]=2$												
		3	12－15	repeat Sub－Loop 0，but ODT $=1$ and $\mathrm{BA}[2: 0]=3$												
		4	16－19	repeat Sub－Loop 0，but ODT $=0$ and $\mathrm{BA}[2: 0]=4$												
		5	20－23	repeat Sub－Loop 0，but ODT $=0$ and $\mathrm{BA}[2: 0]=5$												
		6	24－17	repeat Sub－Loop 0，but ODT $=1$ and $\mathrm{BA}[2: 0]=6$												
		7	28－31	repeat Sub－Loop 0，but ODT $=1$ and $\mathrm{BA}[2: 0]=7$												

a）DM must be driven LOW all the time．DQS，$\overline{\mathrm{DQS}}$ are MID－LEVEL．
b）DQ signals are MID－LEVEL．

Table 7 - IDD4R and IDDQ4R Measurement-Loop Pattern ${ }^{\text {a) }}$

	$\underset{\underset{U}{\mathbf{U}}}{\underline{u}}$		$\frac{\frac{1}{む}}{\frac{0}{0}}$		10		$1 \mathrm{U}$	$1 \mathrm{~m}$	$\stackrel{-}{\circ}$	$\begin{aligned} & \mathbf{O} \\ & \dot{N} \\ & \underset{\sim}{\mathbf{N}} \end{aligned}$	$\begin{aligned} & \text { 글 } \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \mathbf{4} \end{aligned}$	$$	C	Data ${ }^{\text {b }}$
$\begin{aligned} & \text { O } \\ & :=5 \\ & \text { 잉 } \end{aligned}$		0	0	RD	0	1	0	1	0	0	00	0	0	0	0	00000000
			1	D	1	0	0	0	0	0	00	0	0	0	0	-
			2,3	$\overline{\mathrm{D}}, \overline{\mathrm{D}}$	1	1	1	1	0	0	00	0	0	0	0	-
			4	RD	0	1	0	1	0	0	00	0	0	F	0	00110011
			5	D	1	0	0	0	0	0	00	0	0	F	0	-
			6,7	$\overline{\mathrm{D}}, \overline{\mathrm{D}}$	1	1	1	1	0	0	00	0	0	F	0	-
		1	8-15	repeat Sub-Loop 0, but BA[2:0] = 1												
		2	16-23	repeat Sub-Loop 0, but BA[2:0] $=2$												
		3	24-31	repeat Sub-Loop 0, but BA[2:0] $=3$												
		4	32-39	repeat Sub-Loop 0, but BA[2:0] $=4$												
		5	40-47	repeat Sub-Loop 0, but BA[2:0] $=5$												
		6	48-55	repeat Sub-Loop 0, but BA[2:0] $=6$												
		7	56-63	repeat Sub-Loop 0, but BA[2:0] $=7$												

a) DM must be driven LOW all the time. DQS, $\overline{\mathrm{DQS}}$ are used according to RD Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.

Table 8 - IDD4W Measurement-Loop Patterna)

$\underset{\text { \|Y Y }}{\substack{\text { G }}}$	$\underset{\mathbf{V}}{\mathbf{V}}$				19	$\mid \stackrel{\varrho}{c}$	\|ソ	$1 \mathbf{3}$	$\stackrel{5}{\circ}$	$\begin{aligned} & \boldsymbol{O} \\ & \stackrel{\text { N }}{\mathbf{N}} \\ & \mathbf{\sim} \end{aligned}$	$\begin{aligned} & \text { 글 } \\ & \stackrel{\text { Ḧ }}{4} \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \stackrel{-1}{4} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{\mathbf{\alpha}} \end{aligned}$	$\begin{aligned} & \boldsymbol{n} \\ & \stackrel{\ddot{\theta}}{4} \end{aligned}$	웇	Data ${ }^{\text {b }}$
$\begin{aligned} & \text { 우 } \\ & \text { 후 } \\ & \hline 0 \end{aligned}$		0	0	WR	0	1	0	0	1	0	00	0	0	0	0	00000000
			1	D	1	0	0	0	1	0	00	0	0	0	0	-
			2,3	$\overline{\mathrm{D}}, \overline{\mathrm{D}}$	1	1	1	1	1	0	00	0	0	0	0	-
			4	WR	0	1	0	0	1	0	00	0	0	F	0	00110011
			5	D	1	0	0	0	1	0	00	0	0	F	0	-
			6,7	$\overline{\mathrm{D}}, \overline{\mathrm{D}}$	1	1	1	1	1	0	00	0	0	F	0	-
		1	8-15	repeat Sub-Loop 0, but BA[2:0] = 1												
		2	16-23	repeat Sub-Loop 0, but BA[2:0] = 2												
		3	24-31	repeat Sub-Loop 0, but BA[2:0] = 3												
		4	32-39	repeat Sub-Loop 0, but BA[2:0] = 4												
		5	40-47	repeat Sub-Loop 0, but BA[2:0] = 5												
		6	48-55	repeat Sub-Loop 0, but BA[2:0] $=6$												
		7	56-63	repeat Sub-Loop 0, but BA[2:0] $=7$												

a) DM must be driven LOW all the time. DQS, $\overline{\mathrm{DQS}}$ are used according to WR Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.

Table 9 - IDD5B Measurement-Loop Pattern ${ }^{\text {a) }}$

$\left\lvert\, \begin{gathered} \text { Y } \\ \text { V } \\ \text { V } \end{gathered}\right.$	쁜	$\begin{aligned} & \circ 00 \\ & 0 \\ & \frac{1}{3} \\ & \dot{b} \end{aligned}$			10		10	$\left\lvert\, \begin{aligned} & \mathrm{w} \\ & 3 \end{aligned}\right.$	$\frac{5}{0}$	ס N © ©	$\begin{aligned} & \underset{7}{7} \\ & \stackrel{\text { Ḧ }}{4} \end{aligned}$		$\begin{aligned} & \text { הi } \\ & \text { ö } \end{aligned}$	$\begin{aligned} & \mathbf{M} \\ & \stackrel{0}{6} \\ & \hline \mathbf{4} \end{aligned}$	O N ¢	Data ${ }^{\text {b }}$
$\begin{aligned} & \text { 을 } \\ & \text { =亏 } \\ & \text { 웅 } \end{aligned}$		0	0	REF	0	0	0	1	0	0	0	0	0	0	0	-
		1	1.2	D, D	1	0	0	0	0	0	00	0	0	0	0	-
			3,4	$\overline{\mathrm{D}}, \overline{\mathrm{D}}$	1	1	1	1	0	0	00	0	0	F	0	-
			5... 8	repeat cycles 1...4, but BA[2:0] = 1												
			9... 12	repeat cycles 1...4, but BA[2:0] = 2												
			13...16	repeat cycles $1 . .4$, but $\mathrm{BA}[2: 0]=3$												
			17... 20	repeat cycles $1 . . .4$, but $\mathrm{BA}[2: 0]=4$												
			21... 24	repeat cycles $1 . . .4$, but $\mathrm{BA}[2: 0]=5$												
			25... 28	repeat cycles $1 . . .4$, but $\mathrm{BA}[2: 0]=6$												
			29... 32	repeat cycles $1 . .4$, but $\mathrm{BA}[2: 0]=7$												
		2	33...nRFC-1	repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.												

a) DM must be driven LOW all the time. DQS, $\overline{\mathrm{DQS}}$ are MID-LEVEL.
b) $D Q$ signals are MID-LEVEL.

Table 10-I DD7 Measurement-Loop Pattern ${ }^{\text {a) }}$

ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9

$\begin{aligned} & \text { ly } \\ & \text { y } \end{aligned}$		$\begin{aligned} & \text { 응 } \\ & 0 \\ & \frac{1}{3} \\ & \text { in } \end{aligned}$			10	$1 \begin{aligned} & \text { C } \\ & \end{aligned}$	\|in	1	$\stackrel{5}{6}$	$\begin{gathered} \underset{\sim}{\underset{\sim}{\mathbf{N}}} \\ \underset{\sim}{\mathbf{N}} \end{gathered}$	$\begin{aligned} & \text { 급 } \\ & \text { 合 } \\ & \stackrel{\text { H }}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{-1}{4} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ó } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathbf{M} \\ & \ddot{\theta} \\ & \stackrel{4}{4} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \stackrel{N}{4} \end{aligned}$	Data ${ }^{\text {b }}$
	0		0	ACT	0	0	1	1	0	0	00	0	0	0	0	-
			1	RDA	0	1	0	1	0	0	00	1	0	0	0	00000000
			2	D	1	0	0	0	0	0	00	0	0	0	0	-
			...	repeat above D Command until nRRD-1												
			nRRD	ACT	0	0	1	1	0	1	00	0	0	F	0	-
		1	nRRD+1	RDA	0	1	0	1	0	1	00	1	0	F	0	00110011
		1	nRRD+2	D	1	0	0	0	0	1	00	0	0	F	0	-
			...	repeat above D Command until 2^{*} nRRD - 1												
		2	2*nRRD	repeat Sub-Loop 0, but BA[2:0] = 2												
		3	3*nRRD	repeat Sub-Loop 1, but BA[2:0] = 3												
			4*nRRD	D	1	0	0	0	0	3	00	0	0	F	0	-
		4		Assert and repeat above D Command until nFAW - 1, if necessary												
		5	nFAW	repeat Sub-Loop 0, but BA[2:0] $=4$												
		6	nFAW+nRRD	repeat Sub-Loop 1, but BA[2:0] $=5$												
		7	nFAW+2*nRRD	repeat Sub-Loop 0, but BA[2:0] $=6$												
		8	nFAW+3*nRRD	repeat Sub-Loop 1, but BA[2:0] = 7												
		9	nFAW+4*nRRD	D	1	0	0	0	0	7	00	0	0	F	0	-
		9		Assert and repeat above D Command until 2* nFAW - 1, if necessary												
			2*nFAW+0	ACT	0	0	1	1	0	0	00	0	0	F	0	-
		10	2*nFAW+1	RDA	0	1	0	1	0	0	00	1	0	F	0	00110011
		10		D	1	0	0	0	0	0	00	0	0	F	0	-
			2\&nFAW+2	Repeat above D Command until 2^{*} nFAW + nRRD - 1												
			2*nFAW+nRRD	ACT	0	0	1	1	0	1	00	0	0	0	0	-
		11	2*nFAW+nRRD+1	RDA	0	1	0	1	0	1	00	1	0	0	0	00000000
		11	2\&nFAW+nRRD+	D	1	0	0	0	0	1	00	0	0	0	0	-
				Repeat above D Command until 2* nFAW + 2* nRRD - 1												
		12	2*nFAW+2*nRRD	repeat Sub-Loop 10, but BA[2:0] = 2												
		13	2*nFAW+3*nRRD	repeat Sub-Loop 11, but BA[2:0] = 3												
		14		D	1			0	0		00		0	0	0	-
		14	2*nFAW+4*nRRD	Assert and repeat above D Command until 3* nFAW - 1, if necessary												
		15	3*nFAW	repeat Sub-Loop 10, but BA[2:0] $=4$												
		16	3*nFAW+nRRD	repeat Sub-Loop 11, but BA[2:0] = 5												
		17	3*nFAW+2*nRRD	repeat Sub-Loop 10, but BA[2:0] = 6												
		18	3*nFAW+3*nRRD	repeat Sub-Loop 11, but BA[2:0] = 7												
		19	3*nFAW+4*nRRD	D	1	0	0	0	0	7	00	0	0	0	0	-
				Assert and repeat above D Command until 4* nFAW - 1, if necessary												

a) DM must be driven LOW all the time. DQS, $\overline{\mathrm{DQS}}$ are used according to RD Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.

I DD Specifications

IDD values are for full operating range of voltage and temperature unless otherwise noted.

/DD Specification

Speed Grade Bin	$\begin{gathered} \text { DDR3-1066 } \\ 7-7-7 \end{gathered}$	$\begin{gathered} \text { DDR3-1333 } \\ 9-9-9 \end{gathered}$	$\begin{gathered} \text { DDR3-1600 } \\ 11-11-11 \end{gathered}$	$\begin{gathered} \text { DDR3-1866 } \\ 13-13-13 \end{gathered}$	$\begin{gathered} \text { DDR3-2133 } \\ 14-14-14 \end{gathered}$	Unit	Notes
Symbol	Max.	Max.	Max.	Max.	Max.		
/DDO	28	30	31	37	39	mA	x8
	38	39	40	48	52	mA	x16
/DD01	36	37	38	42	46	mA	x8
	49	50	50	55	65	mA	x16
/ DD2P0	8	8	8	8	9	mA	x8
	12	12	12	12	13	mA	x16
/DD2P1	8	8	8	8	9	mA	x8
	12	12	12	12	13	mA	x16
/DD2N	13	13	14	16	18	mA	x8
	17	17	18	20	22	mA	x16
/DD2NT	16	17	19	22	24	mA	x8
	21	21	23	27	30	mA	x16
/DD2Q	13	13	14	16	18	mA	x8
	17	17	18	21	24	mA	x16
/DD3P	20	20	21	22	24	mA	x8
	23	23	24	25	27	mA	x16
/DD3N	28	29	30	31	33	mA	$\times 8$
	31	32	33	35	38	mA	x16
/ DD4R	66	80	88	110	130	mA	$\times 8$
	98	115	130	156	180	mA	x16
/DD4w	72	82	88	110	130	mA	x8
	106	118	130	156	180	mA	x16
/ DD5B	130	130	130	143	150	mA	x8
	130	130	130	143	150	mA	x16
/DD6	11	11	11	11	13	mA	x8
	13	13	13	13	15	mA	x16
/DD6 (Low Power)	10	10	10	11	12	mA	x8
	10	10	10	11	12	mA	x16
/ DD6ET	15	15	15	15	20	mA	x8
	18	18	18	18	23	mA	x16
/DD7	105	125	130	145	175	mA	x8
	160	180	185	200	240	mA	x16

Notes:

1. Applicable for $M R 2$ settings $A 6=0$ and $A 7=0$. Temperature range for IDD6 is $0-85^{\circ} \mathrm{C}$.
2. Applicable for $M R 2$ settings $A 6=0$ and $A 7=1$. Temperature range for IDD6ET is $0-95^{\circ} \mathrm{C}$.

I nput/ Output Capacitance

Parameter	Symbol	DDR3-1066		DDR3-1333		DDR3-1600		DDR3-1866		DDR3-2133		Units	Notes
		Min	Max										
Input/output capacitance (DQ, DM, DQS, $\overline{\text { DQS }}$ TDQS, TDQS)	ClO_{10}	1.5	2.7	1.5	2.5	1.5	2.3	1.4	2.2	1.4	2.1	pF	1,2,3
$\begin{aligned} & \text { Input capacitance, } \mathrm{CK} \\ & \text { and } \overline{\mathrm{CK}} \end{aligned}$	C_{CK}	0.8	1.6	0.8	1.4	0.8	1.4	0.8	1.3	0.8	1.3	pF	2,3
Input capacitance delta CK and CK	$\mathrm{C}_{\text {DCK }}$	0	0.15	0	0.15	0	0.15	0	0.15	0	0.15	pF	2,3,4
Input capacitance delta, DQS and $\overline{D Q S}$	$\mathrm{C}_{\text {DDQS }}$	0	0.20	0	0.15	0	0.15	0	0.15	0	0.15	pF	2,3,5
Input capacitance (All other input-only pins)	C_{1}	0.75	1.35	0.75	1.3	0.75	1.3	0.75	1.2	0.75	1.2	pF	2,3,6
Input capacitance delta (All CTRL input-only pins)	$\mathrm{C}_{\text {DI_CTRL }}$	-0.5	0.3	-0.4	0.2	-0.4	0.2	-0.4	0.2	-0.4	0.2	pF	2,3,7,8
Input capacitance delta (All ADD/CMD input-only pins)	$\underset{\text { CMD }}{\mathrm{CDI}_{\text {DIADD_ }}}$	-0.5	0.5	-0.4	0.4	-0.4	0.4	-0.4	0.4	-0.4	0.4	pF	2,3,9,10
```Input/output capacitance delta (DQ, DM, DQS, \overline{DQS}```	$\mathrm{C}_{\text {DIO }}$	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF	2,3,11
Input/output capacitance of ZQ pin	$\mathrm{C}_{\mathrm{ZQ}}$	-	3	-	3	-	3	-	3	-	3	pF	2,3,12

## Notes:

1. Although the DM, TDQS and $\overline{T D Q S}$ pins have different functions, the loading matches DQ and DQS.
2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER(VNA)") with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE, $\overline{\text { RESET }}$ and ODT as necessary). VDD $=\mathrm{VDDQ}=1.5 \mathrm{~V}, \mathrm{VBIAS}=\mathrm{VDD} / 2$ and on-die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of $\mathrm{C}_{\mathrm{CK}}-\mathrm{C}_{\overline{\mathrm{CK}}}$.
5. Absolute value of $\mathrm{C}_{10}(\mathrm{DQS})-\mathrm{C}_{10}(\overline{\mathrm{DQS}})$.
6. $C_{1}$ applies to ODT, $\overline{C S}, C K E, A 0-A 15, B A 0-B A 2, \overline{R A S}, \overline{C A S}, \overline{W E}$.
7. CDI_CTR applies to ODT, $\overline{C S}$ and CKE.
8. $\left.C_{D I_{-} C T R L}=C_{1}(C N T L)-0.5 * C_{1}(C L K)+C_{1}(\overline{C L K})\right)$
9. $C_{D I _A D D _C M D}$ applies to A0-A15, BA0-BA2, $\overline{R A S}, \overline{C A S}$ and $\overline{W E}$.
10. $C_{D I _A D D _C M D}=C_{I}\left(A D D_{-} C M D\right)-0.5^{*}\left(C_{1}(C L K)+C_{I}(\overline{C L K})\right)$
11. $C_{D I O}=C_{10}(D Q)-0.5^{*}\left(C_{10}(D Q S)+C_{10}(\overline{D Q S})\right)$
12. Maximum external load capacitance an ZQ pin: 5 pF .

## Standard Speed Bins

DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.

## DDR3-1066 Speed Bins

For specific Notes see "Speed Bin Table Notes" on page 31.

Speed Bin			DDR3-1066		Unit	Note
CL - nRCD - nRP			7-7-7			
Parameter		Symbol	min	max		
Internal read command to first data		$t_{\text {AA }}$	13.125	20	ns	
ACT to internal read or write delay time		$t_{\text {RCD }}$	13.125	-	ns	
PRE command period		$t_{\text {RP }}$	13.125	-	ns	
ACT to ACT or REF command period		$t_{\text {RC }}$	50.625	-	ns	
ACT to PRE command period		$t_{\text {RAS }}$	37.5	$9 *$ tREFI	ns	
$\mathrm{CL}=5$	CWL $=5$	$t_{\text {CK(AVG })}$	3.0	3.3	ns	$\begin{gathered} 1,2,3,4,6, \\ 12,13 \end{gathered}$
	CWL = 6	$t_{\text {CK(AVG }}$	Reserved		ns	4
$\mathrm{CL}=6$	CWL $=5$	$t_{\text {CK(AVG }}$	2.5	3.3	ns	1, 2, 3, 6
	CWL = 6	$t_{\text {CK(AVG }}$	Reserved		ns	1, 2, 3, 4
$\mathrm{CL}=7$	CWL $=5$	$t_{\text {CK(AVG }}$	Reserved		ns	4
	CWL = 6	$t_{\text {CK(AVG }}$	1.875	$<2.5$	ns	1, 2, 3, 4
$\mathrm{CL}=8$	CWL $=5$	$t_{\text {CK(AVG }}$	Reserved		ns	4
	CWL = 6	$t_{\text {CK(AVG })}$	1.875	$<2.5$	ns	1, 2, 3
Supported CL Settings			5, 6, 7, 8		$n_{\text {CK }}$	13
Supported CWL Settings			5, 6		$n_{\text {CK }}$	

DDR3-1333 Speed Bins
For specific Notes see "Speed Bin Table Notes" on page 31.

$\begin{gathered} \text { Speed Bin } \\ \hline \text { CL - nRCD - nRP } \end{gathered}$			DDR3-1333		Unit	Note
Parameter		Symbol	min	max		
Internal read command to first data		$t_{\text {AA }}$	$\begin{gathered} 13.5 \\ (13.125)^{5,11} \end{gathered}$	20	ns	
ACT to internal read or write delay time		$t_{\text {RCD }}$	$\begin{gathered} 13.5 \\ (13.125)^{5,11} \end{gathered}$	-	ns	
PRE command period		$t_{\text {RP }}$	$\begin{gathered} 13.5 \\ (13.125)^{5,11} \end{gathered}$	-	ns	
ACT to ACT or REF command period		$t_{\text {RC }}$	$\begin{gathered} 49.5 \\ (49.125)^{5,11} \end{gathered}$	-	ns	
ACT to PRE command period		$t_{\text {RAS }}$	36	9 * tREFI	ns	
$C L=5$	CWL $=5$	$t_{\text {CK(AVG })}$	3.0	3.3	ns	$\begin{gathered} 1,2,3,4 \\ 7,12,13 \\ \hline \end{gathered}$
	CWL $=6,7$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$C L=6$	CWL $=5$	$t_{\text {CK(AVG })}$	2.5	3.3	ns	1, 2, 3, 7
	CWL $=6$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 7
	CWL $=7$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$C L=7$	CWL $=5$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=6$	$t_{\text {CK(AVG })}$	1.875	< 2.5	ns	1, 2, 3, 4, 7
			(Optional) ${ }^{5}$			
	CWL = 7	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4
$\mathrm{CL}=8$	CWL $=5$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=6$	$t_{\text {CK(AVG })}$	1.875	$<2.5$	ns	1, 2, 3, 7
	CWL $=7$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4
$C L=9$	CWL = 5, 6	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=7$	$t_{\text {CK(AVG })}$	1.5	<1.875	ns	1, 2, 3, 4
$C L=10$	CWL $=5,6$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=7$	$t_{\text {CK(AVG })}$	1.5	<1.875	ns	1, 2, 3
			(Optional)		ns	5
Supported CL Settings			5, 6, 8, (7), 9, (10)		$n_{\text {CK }}$	
Supported CWL Settings			5, 6, 7		$n_{\text {CK }}$	

DDR3-1600 Speed Bins
For specific Notes see "Speed Bin Table Notes" on page 31.

Speed Bin			DDR3-1600		Unit	Note
CL - nRCD - nRP			11-11-11			
Parameter		Symbol	min	max		
Internal read command to first data		$t_{\text {AA }}$	$\begin{gathered} 13.75 \\ (13.125)^{5,11} \end{gathered}$	20	ns	
ACT to internal read or write delay time		$t_{\text {RCD }}$	$\begin{gathered} 13.75 \\ (13.125)^{5,11} \end{gathered}$	-	ns	
PRE command period		$t_{\text {RP }}$	$\begin{gathered} 13.75 \\ (13.125)^{5,11} \end{gathered}$	-	ns	
ACT to ACT or REF command period		$t_{\text {RC }}$	$\begin{gathered} 48.75 \\ (48.125)^{5,11} \end{gathered}$	-	ns	
ACT to PRE command period		$t_{\text {RAS }}$	35	9 * tREFI	ns	
$\mathrm{CL}=5$	CWL $=5$	$t_{\text {CK(AVG })}$	3.0	3.3	ns	$\begin{gathered} 1,2,3,4 \\ 8,12,13 \end{gathered}$
	CWL $=6,7$	$t_{\text {CK(AVG })}$	Reserved		ns	4
CL $=6$	CWL $=5$	$t_{\text {CK(AVG })}$	2.5	3.3	ns	1, 2, 3, 8
	CWL $=6$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 8
	CWL = 7	$t_{\text {CK(AVG })}$	Reserved		ns	4
$\mathrm{CL}=7$	CWL $=5$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=6$	$t_{\text {CK(AVG })}$	1.875	$<2.5$	ns	1, 2, 3, 4, 8
			(Optional) ${ }^{5}$			
	CWL $=7$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 8
	CWL $=8$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$\mathrm{CL}=8$	CWL = 5	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=6$	$t_{\text {CK(AVG })}$	1.875	$<2.5$	ns	1, 2, 3, 8
	CWL $=7$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 8
	CWL $=8$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4
$\mathrm{CL}=9$	CWL $=5,6$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=7$	$t_{\text {CK(AVG })}$	1.5	$<1.875$	ns	1, 2, 3, 4, 8
			(Optional) ${ }^{5}$			
	CWL $=8$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4
$C L=10$	CWL $=5,6$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 7	$t_{\text {CK(AVG })}$	1.5	<1.875	ns	1, 2, 3, 8
	CWL $=8$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4
$\mathrm{CL}=11$	CWL $=5,6,7$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=8$	$t_{\text {CK(AVG })}$	1.25	<1.5	ns	1, 2, 3
Supported CL Settings			5, 6, (7), 8, (9), 10, 11		$n_{\text {CK }}$	
Supported CWL Settings			5, 6, 7, 8		$n_{\text {CK }}$	

DDR3-1866 Speed Bins
For specific Notes see "Speed Bin Table Notes" on page 31.

$\begin{gathered} \text { Speed Bin } \\ \hline \mathbf{C L}-\text { nRCD - nRP } \end{gathered}$			$\begin{gathered} \text { DDR3-1866 } \\ \hline 13-13-13 \\ \hline \end{gathered}$		Unit	Note
Parameter		Symbol	min	max		
Internal read command to first data		$t_{\text {AA }}$	$\begin{gathered} 13.91 \\ (13.125)^{5,14} \end{gathered}$	20	ns	
ACT to internal read or write delay time		$t_{\text {RCD }}$	$\begin{gathered} 13.91 \\ (13.125)^{5,14} \end{gathered}$	-	ns	
PRE command period		$t_{\text {RP }}$	$\begin{gathered} 13.91 \\ (13.125)^{5,14} \end{gathered}$	-	ns	
ACT to PRE command period		$t_{\text {RAS }}$	34	$9 *$ tREFI	ns	
ACT to ACT or PRE command period		$t_{\text {RC }}$	$\begin{gathered} 47.91 \\ (47.125)^{5,14} \end{gathered}$	-	ns	
$C L=5$	CWL = 5	$t_{\text {CK(AVG })}$	3.0	3.3	ns	1, 2, 3, 4, 9
	CWL $=6,7,8,9$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$C L=6$	CWL $=5$	$t_{\text {CK(AVG })}$	2.5	3.3	ns	1, 2, 3, 9
	CWL = 6	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 9
	CWL = 7,8,9	$t_{\text {CK(AVG })}$	Reserved		ns	4
$\mathrm{CL}=7$	CWL $=5$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=6$	$t_{\text {CK(AVG })}$	1.875	$<2.5$	ns	1, 2, 3, 4, 9
	CWL $=7,8,9$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$\mathrm{CL}=8$	CWL $=5$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 6	$t_{\text {CK(AVG })}$	1.875	< 2.5	ns	1, 2, 3, 9
	CWL = 7	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 9
	CWL $=8,9$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$\mathrm{CL}=9$	CWL $=5,6$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 7	$t_{\text {CK(AVG })}$	1.5	<1.875	ns	1, 2, 3, 4, 9
	CWL $=8$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 9
	CWL $=9$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$C L=10$	CWL $=5,6$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 7	$t_{\text {CK(AVG })}$	1.5	<1.875	ns	1, 2, 3, 9
	CWL $=8$	$t_{\text {CK(AVG })}$			ns	1, 2, 3, 4, 9
$\mathrm{CL}=11$	CWL $=5,6,7$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=8$	$t_{\text {CK(AVG })}$	1.25	<1.5	ns	1, 2, 3, 4,9
	CWL $=9$	$t_{\text {CK(AVG })}$			ns	1, 2, 3, 4
$\mathrm{CL}=12$	CWL = 5,6,7,8	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=9$	$t_{\text {CK(AVG })}$	Reserved		ns	1,2,3,4
$C L=13$	CWL $=5,6,7,8$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=9$	$t_{\text {CK(AVG })}$	1.07	<1.25	ns	1, 2, 3
Supported CL Settings			$6,8,10,13,(7),(9),(11)$		$n_{\text {CK }}$	
Supported CWL Settings			5, 6, 7, 8, 9		$n_{\text {CK }}$	

DDR3-2133 Speed Bins
For specific notes see "Speed Bin Table Notes" on page 31.

$\begin{gathered} \text { Speed Bin } \\ \hline \text { CL - nRCD }- \text { nRP } \end{gathered}$			DDR3-2133		Unit	Note
Parameter		Symbol	min	max		
Internal read command to first data		$t_{\text {AA }}$	13.09	20.0	ns	
ACT to internal read or write delay time		$t_{\text {RCD }}$	13.09	-	ns	
PRE command period		$t_{\text {RP }}$	13.09	-	ns	
ACT to PRE command period		$t_{\text {RAS }}$	33.0	9* tREFI	ns	
ACT to ACT or PRE command period		$t_{\text {RC }}$	46.09	-	ns	
$\mathrm{CL}=5$	CWL = 5	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 10
	CWL $=6,7,8,9,10$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$\mathrm{CL}=6$	CWL = 5	$t_{\text {CK(AVG })}$	2.5	3.3	ns	1, 2, 3, 10
	CWL = 6	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 10
	CWL $=7,8,910$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$C L=7$	CWL $=5$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 6	$t_{\text {CK(AVG })}$	1.875	$<2.5$	ns	1, 2, 3, 10
	CWL = 7	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 10
	CWL $=8,9,10$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$C L=8$	CWL $=5$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 6	$t_{\text {CK(AVG })}$	1.875	$<2.5$	ns	1, 2, 3, 10
	CWL = 7	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 10
	CWL $=8,9,10$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$C L=9$	CWL = 5, 6	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 7	$t_{\text {CK(AVG })}$	1.5	$<1.875$	ns	1, 2, 3, 10
	CWL = 8	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 10
	CWL $=9,10$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$\mathrm{CL}=10$	CWL = 5, 6	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 7	$t_{\text {CK(AVG })}$	1.5	<1.875	ns	1, 2, 3, 10
	CWL = 8	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 10
	CWL = 9	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 10
	CWL $=10$	$t_{\text {CK(AVG })}$	Reserved		ns	4
$\mathrm{CL}=11$	CWL $=5,6,7$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=8$	$t_{\text {CK(AVG })}$	1.25	$<1.5$	ns	1, 2, 3, 10
	CWL $=9$	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 10
	CWL = 10	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4
$\mathrm{CL}=12$	CWL $=5,6,7,8$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 9	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4, 10
	CWL = 10	$t_{\text {CK(AVG })}$	Reserved		ns	1, 2, 3, 4
$\mathrm{CL}=13$	CWL $=5,6,7,8$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL $=9$	$t_{\text {CK(AVG })}$	1.07	<1.25	ns	1, 2, 3, 10
	CWL = 10	$t_{\text {CK(AVG })}$	Reserved			1, 2, 3, 4
$C L=14$	CWL $=5,6,7,8,9$	$t_{\text {CK(AVG })}$	Reserved		ns	4
	CWL = 10	$t_{\text {CK(AVG })}$	0.935	$<1.07$	ns	1, 2, 3
Supported CL Settings			$5,6,7,8,9,10,11,12,13,14$		$n_{\text {CK }}$	
Supported CWL Settings			$5,6,7,8,9,10$		$n_{\text {CK }}$	

## Speed Bin Table Notes

Absolute Specification ( $\mathrm{T}_{\mathrm{OPER}} ; \mathrm{V}_{\mathrm{DDQ}}=\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}+/-0.075 \mathrm{~V}$ );

1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller J EDEC standard tCK(AVG) value (3.0, $2.5,1.875,1.5$, or 1.25 ns ) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next 'Supported CL', where tCK(AVG) $=3.0 \mathrm{~ns}$ should only be used for $C L=5$ calculation.
3. $\mathrm{tCK}(\mathrm{AVG}) . \mathrm{MAX}$ limits: Calculate $\mathrm{tCK}(\mathrm{AVG})=\mathrm{tAA} . M A X / C L$ SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3 ns or 2.5 ns or 1.875 ns or 1.25 ns ). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. 'Reserved' settings are not allowed. User must program a different value.
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to SK Hynix DIMM data sheet and/or the DIMM SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
9. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
10. Any DDR3-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
11. SK Hynix DDR3 SDRAM devices supporting optional down binning to $C L=7$ and $C L=9$, and $t A A / t R C D /$ tRP must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR31333 H devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125 ns , tRCmin (Byte 21,23 ) also should be programmed accordingly. For example, 49.125 ns (tRASmin + tRPmin $=36$ ns +13.125 ns ) for DDR3-1333H and 48.125 ns (tRASmin + tRPmin $=35 \mathrm{~ns}+13.125 \mathrm{~ns}$ ) for DDR31600K.
12. DDR3 800 AC timing apply if DRAM operates at lower than $800 \mathrm{MT} / \mathrm{s}$ data rate.
13. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding.
14. SK Hynix DDR3 SDRAM devices supporting optional down binning to $\mathrm{CL}=11, \mathrm{CL}=9$ and $\mathrm{CL}=7, \mathrm{tAA} /$ tRCD/tRPmin must be 13.125 ns. SPD setting must be programed to match. For example, DDR3-1866M devices supporting down binning to DDR3-1600K or DDR3-1333H or 1066F should program 13.125 ns in SPD bytes for tAAmin(byte 16), tRCDmin(byte 18) and tRPmin(byte 20) is programmed to 13.125 ns , tRCmin(byte 21,23 ) also should be programmed accordingly. For example, 47.125 ns (tRASmin + tRPmin $=34 n s+13.125 n s)$

## Package Dimensions

## Package Dimension(x8): 78Ball Fine Pitch Ball Grid Array Outline



TOP VIEW


BOTTOM VI EW

## Package Dimension(x16): 96Ball Fine Pitch Ball Grid Array Outline



## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SRAM category:
Click to view products by SK HYNIX manufacturer:
Other Similar products are found below :
5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB CYDM128B16-55BVXIT GS8161Z36DD-200I GS88237CB-200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2\#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN 515712X IS62WV51216EBLL45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 5962-8959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG GS81284Z36B-250I M38510/28902BVA IS62WV12816ALL-70BLI 59628971203XA 5962-8971202ZA


[^0]:    * SK Hynix reserves the right to change products or specifications without notice.

