SIKYWORIS ${ }^{\circ}$

DATA SHEET

AS193-73, AS193-73LF: PHEMT GaAs IC High-Linearity 3 V Control SPDT Switch 0.1-2.5 GHz

Features

- 2.5 to 5 V linear operation
- Harmonics $\mathrm{H}_{2}, \mathrm{H}_{3}>65 \mathrm{dBc} @ \mathrm{P}_{\mathrm{IN}}=34.5 \mathrm{dBm}$
- Low insertion loss ($0.35 \mathrm{~dB} @ 0.9 \mathrm{GHz}$)
- High isolation ($24 \mathrm{~dB} @ 0.9 \mathrm{GHz}$)
- Ultraminiature SOT-6 package
- PHEMT process
- Available lead (Pb)-free and RoHS-compliant MSL-1 @ $260^{\circ} \mathrm{C}$ per JEDEC J-STD-020

Description

The AS193-73 is a PHEMT GaAs FET IC high-linearity SPDT switch in a SOT-6 plastic package. This switch has been designed for use where extremely high linearity, low control voltage, high isolation, low insertion loss and ultraminiature package size are required. It can be controlled with positive, negative or a combination of both voltages. Some standard implementations include antenna changeover, T / R and diversity switching over 3 W . The AS193-73 switch can be used in many analog and digital wireless communication systems including cellular, GSM and UMTS applications.

NEW Skyworks offers lead (Pb)-free, RoHS (Restriction of Hazardous Substances)-compliant packaging.

Pin Out

DC blocking capacitors (C_{BL}) must be supplied externally. $C_{B L}=100 \mathrm{pF}$ for operating frequency $>500 \mathrm{MHz}$.

Electrical Specifications at $25^{\circ} \mathrm{C}(0,3 \mathrm{~V})$

	Parameter ${ }^{(1)}$	Frequency	Min.	Typ.	Max.	Unit
Insertion loss ${ }^{(2)}$		$0.1-0.5 \mathrm{GHz}$		0.30	0.4	dB
		$0.5-1.0 \mathrm{GHz}$		0.35	0.5	dB
		$1.0-2.0 \mathrm{GHz}$		0.45	0.6	dB
		$2.0-2.5 \mathrm{GHz}$		0.55	0.7	dB
Isolation		$0.1-0.5 \mathrm{GHz}$	28	30		dB
		$0.5-1.0 \mathrm{GHz}$	22	24		dB
		$1.0-2.0 \mathrm{GHz}$	17	19		dB
		$2.0-2.5 \mathrm{GHz}$	15	17		dB
VSWR ${ }^{(3)}$		0.1-1.0 GHz		1.2:1		dB
		$1.0-2.5 \mathrm{GHz}$		1.3:1		dB

[^0]
Innovation to $\mathbf{G o}^{\text {™ }}$

Now available for purchase online

Operating Characteristics at $25{ }^{\circ} \mathrm{C}(0,3 \mathrm{~V})$

Parameter	Condition	Frequency	Min.	Typ.	Max.	Unit
Switching characteristics Rise, fall On, off Video feedthru	10/90\% or 90/10\% RF 50\% CTL to 90/10\% RF $\mathrm{T}_{\text {RISE }}=1 \mathrm{~ns}, \mathrm{BW}=500 \mathrm{MHz}$			$\begin{gathered} 60 \\ 100 \\ 50 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{mV} \end{aligned}$
Input power for -0.1 dB compression	$V_{\text {CTL }}=0 / 3 \mathrm{~V}$	0.9 GHz		37		dBm
Harmonics $\mathrm{H}_{2}, \mathrm{H}_{3}$	$\mathrm{P}_{\text {IN }}=34.5 \mathrm{dBm}$	0.9 GHz		-65		dBc
Thermal resistance				25		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Control voltages	$\mathrm{V}_{\text {Low }}=0$ to 0.2 V @ $20 \mu \mathrm{~A}$ max. $\mathrm{V}_{\text {HIGH }}=2.5 \mathrm{~V} @ 100 \mu \mathrm{~A}$ max. to $5 \mathrm{~V} @ 200 \mu \mathrm{~A} \max$.					

Typical Performance Data

Harmonics vs. Control Voltage 34.5 dBm 900 MHz GSM Pulse

Absolute Maximum Ratings

Characteristic	Value
RF input power	6 W max. $>900 \mathrm{MHz}$,
$0 / 5 \mathrm{~V}$ control	

Performance is guaranteed only under the conditions listed in the specifications table and is not guaranteed under the full range(s) described by the Absolute Maximum specifications. Exceeding any of the absolute maximum/minimum specifications may result in permanent damage to the device and will void the warranty.

CAUTION: Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

Recommended Solder Reflow Profiles
Refer to the "Recommended Solder Reflow Profile" Application Note.

Tape and Reel Information

Refer to the "Discrete Devices and IC Switch/Attenuators
Tape and Reel Package Orientation" Application Note.

Truth Table

$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{J}_{1}-\mathbf{J}_{\mathbf{2}}$	$\mathbf{J}_{\mathbf{1}}-\mathbf{J}_{\mathbf{3}}$
0	$\mathrm{~V}_{\text {HIGH }}$	Isolation	Insertion loss
$\mathrm{V}_{\text {HIGH }}$	0	Insertion loss	Isolation

All other conditions not recommended.
$\mathrm{V}_{\text {HIGH }}=2.5$ to 5 V .

SOT-6

0.012

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Skyworks manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: 1. All measurements made in a 50Ω system, unless otherwise specified.
 2. Insertion loss changes by $0.003 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.
 3. Insertion loss state.
