

CMOS 2.4GHZ TRANSMIT/RECEIVE WLAN RFeIC

Description

The RFX2402E is a fully integrated, single-chip, single-die RFeIC (RF Front-end Integrated Circuit) which incorporates all the RF functionality needed for today's wireless communications.

The RFX2402E architecture integrates the PA, LNA, Transmit and Receive switching circuitry, the associated matching network, and a harmonic filter all in a CMOS single-chip device.

This RFeIC is designed for use in 802.11b/g/n/ac applications operating at 2.4GHz. Combining superior performance, high sensitivity and efficiency, low noise, small form factor, and low cost, the RFX2402E is the ideal solution for single antenna applications, and the ideal building block for MIMO applications.

The RFX2402E has simple and low-voltage CMOS control logic, and requires minimal external components for system implementation. The PA power detector circuit is also integrated.

Applications

802.11b/g/n/ac Multimedia Applications
 802.11b/g/n/ac Embedded Applications

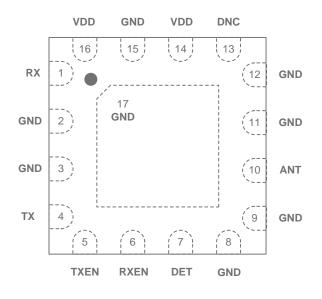
802.11b/g/n/ac Mobile Platforms

- 802.11b/g/n/ac NIC PC Card
 Other 2.4GHz ISM Radios
 - ▶ 802.11b/g/n/ac Access Point

FEATURES

- 2.4GHz ISM, Single Chip, Single-Die RF Front-End IC
- Separate TX and RX Transceiver Port and Single Antenna Port
- 2.4GHz Power Amplifier with Low-Pass Harmonic Filter
- Low Noise Amplifier
- Transmit/Receive Switch Circuitry
- High Transmit Signal Linearity Meeting Standards for OFDM and CCK modulation
- Integrated Power Detector for Transmit Power Monitor and Control
- Compatible with Low Voltage (1.2V) CMOS Control Logic or levels up to VDD

- ESD Protection Circuitry on All Ports
- DC Decoupled RF Ports
- Internal RF Decoupling on All VDD Bias Pins
- Low Noise Figure for Receive Channels
- High Power Capability for Received Signals
- Very Low DC Power Consumption
- Full On-chip Matching and Decoupling Circuitry
- Minimal External Components Required
- ▶ 50-Ohm Input / Output Matching
- Market Proven CMOS Technology
- 3mm x 3mm x 0.55mm Small Outline 16L-QFN Package with Exposed Ground Pad



RFX2402E Production Data Sheet

PIN ASSIGNMENTS:

Pin Number	Pin Name	Description		
1	RX	Received RF Signal from the LNA to the Transceiver; DC Shorted to GND		
2, 3, 8, 9, 11,12, 15, 17	GND	Ground – Must be connected to Ground in the Application Circuit		
4	ТХ	Transmitted RF signal from the Transceiver to the PA: DC Shorted to GND		
5	TXEN	CMOS Input to Enable the PA		
6	RXEN	CMOS Input to Enable the LNA		
7	DET	Analog Voltage Proportional to the PA Power Output		
10	ANT	Antenna port RF Signal from the PA or RF Signal Applied to the LNA; DC Shorted to GND		
13	DNC	Reserved pin, Do not connect in the Application Circuit		
14, 16	VDD	Voltage Supply Connection		

PINOUT DIAGRAM:

(Top "See-Through" View)

ABSOLUTE MAXIMUM RATINGS:

Parameters	Units	Min	Мах	Conditions
DC VDD Voltage Supply	V	0	4.5	All VDD Pins
DC Control Pin Voltage	Control Pin Voltage V 0		3.6	Through 1Kohm resistor
DC VDD Current Consumption	mA		350	Through VDD Pins when TX is "ON"
DC Control Pin Current Consumption	μΑ		1	
TX RF Input Power	dBm		+10	All Operating Modes
ANT RF Input Power	dBm		+5	When RX is "ON"
Junction Temperature	°C		+150	
Storage Ambient Temperature	°C	-50	+150	No RF and DC Voltages Applied Appropriate care required according to JEDEC Standards

Note: Sustained operation at or above the Absolute Maximum Ratings for any one or combinations of the above parameters may result in permanent damage to the device and is not recommended. All Maximum RF Input Power Ratings assume 50-Ohm terminal impedance.

NOMINAL OPERATING CONDITIONS:

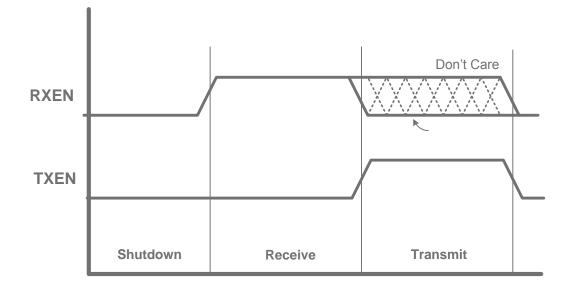
Parameters	Units	Min	Тур	Max	Conditions	
DC VDD Voltage Supply	V	2.7	3.3	3.6	All VDD Pins	
Control Voltage "High" (Note 1)	V	1.2			Through Series Resistor	
Control Voltage "Low"	V			0.3		
DC Control Pin Current Consumption	uA		1			
DC Shutdown Current	uA		2		All Control Lines "Low"	
PA Turn On/Off Time	usec		0.5			
LNA Turn On/Off Time	usec		0.8			
Shut-Down and "ON" State Switching Time	usec		0.5			
Operating Ambient Temperature	°C	-40		+125	Coorrete O	
θја	°C/W		35		See note 2	

Note 1: If control voltage can exceed 1.8V, a $1K\Omega - 10K\Omega$ series resistor is recommended for the application circuit on each control line.

Note2: For operation above +85 °C, use the θ ja as guidance for system design to assure the junction temperature will not exceed the maximum of +150 °C.

RFX2402E Production Data Sheet

TRANSMIT TECHNICAL PARAMETERS (VDD=3.3V, T=+25 °C)


Parameters	Units	Min	Тур	Max	Conditions
Operating Frequency Band	GHz	2.4		2.5	All RF Pins Terminated by 50 Ohms
Output P1dB	dBm		+24		CW
Linear Output Power 802.11b	dBm		+21		1Mbps CCK, Mask Compliance
Linear Output Power 802.11n	dBm		+17		54Mbps OFDM, EVM< -33dB at ANT
Linear Output Power 802.11g	dBm		+18		54Mbps OFDM, EVM<-30 dB at ANT
Large-Signal Power Gain in All Modes	dB		28		P _{OUT} = +18dBm
Small-Signal Power Gain in All Modes	dB		28.5		P _{OUT} = 0dBm
TX Quiescent Current	mA		80		No RF Applied
TX Linear Current	mA		140		P _{OUT} = +18dBm
Power Detector Voltage Output	V		0.25-1.6		$P_{OUT} = +5 \text{ to } +20 \text{dBm}$
Second Harmonic (CW)	dBc		-30		P _{OUT} = +20dBm, CW at ANT Pin
Third Harmonic (CW)	dBc		-35		$P_{OUT} = +20$ dBm, CW at ANT Pin
Modulated Second Harmonic	dBm/MHz		-26		P _{OUT} = +20dBm, 802.11n HT40
Modulated Third Harmonic	dBm/MHz		-30		P _{OUT} = +20dBm, 802.11n HT40
Input Return Loss	dB		-10		
Output Return Loss	dB		-12		
Input Output Impedance Single- Ended	Ohm		50		
TX Leakage to RX Port	dBm		-7		P _{OUT} = +20dBm at ANT

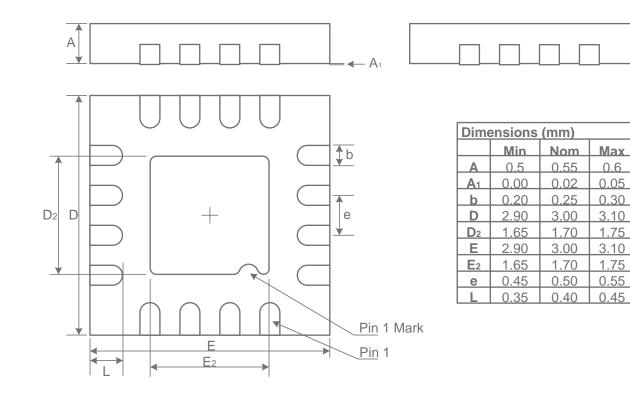
RECEIVE TECHNICAL PARAMETERS (VDD=3.3V, T=+25 °C)

Parameters	Units	Min	Тур	Max	Conditions
Operating Frequency Band	GHz	2.4		2.5	All RF Pins are Terminated by 50 Ohm
Gain	dB		11		
Noise Figure	dB		3		
Input Return Loss	dB		-12		
Output Return Loss	dB		-10		
RF Port Impedance	Ohm		50		
RX Quiescent Current	mA		9		No RF Applied
Input P _{1dB}	dBm		-5		

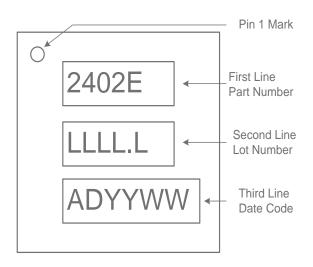
CONTROL SIGNAL DIAGRAM:

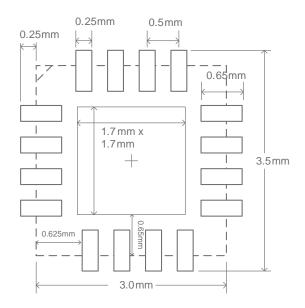
CONTROL LOGIC TRUTH TABLE:

TXEN	RXEN	Operating Conditions
0	0	Shut-down
0	1	RX Active
1	Х	TX Active


Note: "1" denotes high voltage state (> 1.2V)

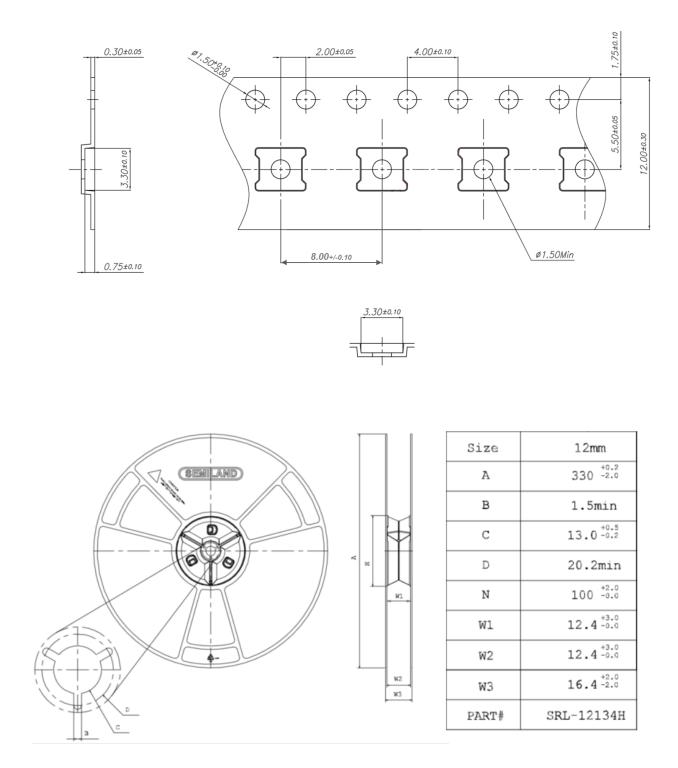
"0" denotes low voltage stage (<0.3V) at Control Pins "X" denotes the don't care state




RFX2402E Production Data Sheet

PACKAGE DIMENSIONS:

PACKAGE MARKING



PCB LAND PATTERN

TAPE AND REEL INFORMATION:

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Skyworks manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1