

#### Applications

- 5 GHz WLAN (IEEE802.11a/g/n)
- Access Points, PCMCIA, PC cards

#### **Features**

- 5GHz Front End Module with PA, LNA and T/R Switch
- Integrated power amplifier enable pin (VEN)
- Buffered, temperature compensated power detector
- High and Low-Linearity mode
- 3% EVM, @17dBm, 64 QAM, 54 Mbps
- 30 dB Typical Gain
- Lead Free and RoHS compliant, halogen free package
- 16 pin 3 mm x 3 mm x 0.6 mm QFN, MSL1

#### **Ordering Information**

| Part Number | Package        | Remark        |
|-------------|----------------|---------------|
| SE5007T     | 16 Pin QFN     | Samples       |
| SE5007T-R   | 16 Pin QFN     | Tape and Reel |
| SE5007T-EK1 | Evaluation Kit | Standard      |

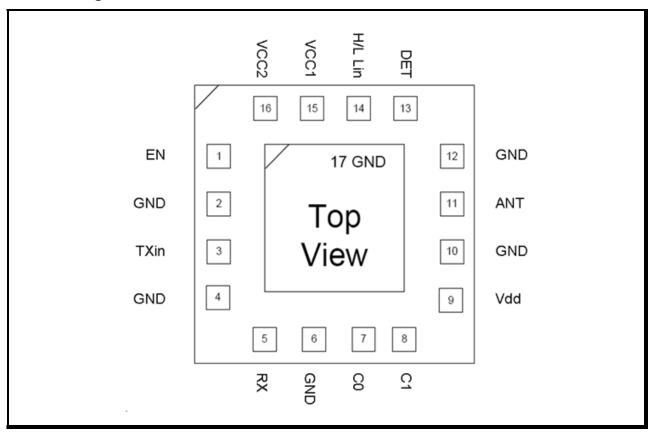
#### **Functional Block Diagram**

# VCC1,2 DET H/L Lin C0 C1 EN Image: Construction of the state of the state

#### Figure 1: Functional Block Diagram

#### **Product Description**

The SE5007T is a 5GHz front end module offering high linear power for wireless LAN applications. It incorporates a power detector for control of the output power.


The SE5007T offers a high level of integration for a simplified design, providing quicker time to market and higher application board production yield. The device integrates the input match, inter-stage match, a temperature compensated, load insensitive power detector with 20dB of dynamic range, a 3.8GHz notch filter, a T/R switch and LNA.

For wireless LAN applications, the device meets the requirements of IEEE802.11a and delivers approximately 17dBm of linear output power. It also features a low linearity mode control to reduce current consumption at low power modes.

The SE5007T integrates the reference voltage generator, allowing for a true 1.8V CMOS compatible digital EN (enable) function to turn the power amplifier on and off.



#### Pin Out Diagram



#### Figure 2: SE5007T Pin-Out Diagram

# **Pin Out Description**

| Pin<br>No. | Name | Description             |
|------------|------|-------------------------|
| 1          | EN   | PA Enable               |
| 2          | GND  | Ground                  |
| 3          | TXIN | 5GHz TX RF Input Signal |
| 4          | GND  | Ground                  |
| 5          | RX   | 5GHz LNA Output Signal  |
| 6          | GND  | Ground                  |
| 7          | C0   | Switch Control Logic 1  |
| 8          | C1   | Switch Control Logic 2  |

| Pin<br>No. | Name    | Description                       |
|------------|---------|-----------------------------------|
| 9          | VDD     | LNA Supply Voltage                |
| 10         | GND     | Ground                            |
| 11         | ANT     | 5GHz Antenna output               |
| 12         | GND     | Ground                            |
| 13         | DET     | Power Detector Output             |
| 14         | H/L Lin | High-Low linearity Control        |
| 15         | VCC1    | Power Stage Supply Voltage        |
| 16         | VCC2    | Bias, Driver Stage Supply Voltage |



#### Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings for a long period of time may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

| Symbol             | Defir                                | nition         | Min. | Max. | Unit |
|--------------------|--------------------------------------|----------------|------|------|------|
| Vcc1               | Supply Voltage on pin 15             | 3.0            | 4.8  | V    |      |
| VDD, VCC2          | Supply Voltage on pins 9,            | 3.0            | 3.6  | V    |      |
| EN                 | DC input on Enable                   | -0.3           | 3.6  | V    |      |
| TXIN               | RF Input Power, RFout into 50Ω match |                | -    | 12   | dBm  |
| Тѕтс               | Storage Temperature Range            |                | -40  | 150  | °C   |
| ESD                | JEDEC JESD22-A114                    | Antenna Pin    | -    | 1000 | V    |
| ESD <sub>HBM</sub> | all pins                             | All Other Pins | -    | 300  | V    |

#### **Recommended Operating Conditions**

| Symbol    | Parameter                                | Min. | Max. | Unit |
|-----------|------------------------------------------|------|------|------|
| Vcc1      | Supply Voltage on pin 15 (VCC1)          | 3.0  | 4.5  | V    |
| VDD, VCC2 | Supply Voltage on pins 9, 16 (VDD, VCC2) | 3.0  | 3.6  | V    |
| TA        | Ambient Temperature                      | -40  | 85   | °C   |

#### **Control Logic Characteristics**

Conditions: V<sub>CC1</sub> = V<sub>CC2</sub> = V<sub>DD</sub> = V<sub>PAON</sub> = V<sub>EN</sub> = 3.3 V, T<sub>A</sub> = 25 °C, as measured on Skyworks Solutions' SE5007T-EV1 evaluation board, unless otherwise noted.

| Symbol      | Parameter                       | Conditions                                                                          | Min. | Тур. | Max. | Unit |
|-------------|---------------------------------|-------------------------------------------------------------------------------------|------|------|------|------|
|             |                                 | P <sub>OUT</sub> = 17 dBm, 54 Mbps, 64 QAM,<br>H/L Lin = 3.3V (High Linearity Mode) | -    | 195  | -    |      |
|             | Supply Current,                 | P <sub>OUT</sub> = 13 dBm, 54 Mbps, 64 QAM,<br>H/L Lin = 0V (Low Linearity Mode)    | -    | 140  | -    |      |
| ICC-802.11a | Transmit Mode                   | P <sub>OUT</sub> = 5 dBm, 54 Mbps, 64 QAM,<br>H/L Lin = 0V (Low Linearity Mode)     | -    | 105  | -    | mA   |
|             |                                 | P <sub>OUT</sub> = 19 dBm, 54 Mbps, 64 QAM,<br>H/L Lin = 3.3V, VCC1 = 4.0V          |      | 220  |      |      |
|             | Supply Current,<br>Receive Mode | $V_{EN} = C0 = 0V; C1 = 3.3V$                                                       |      | 15   |      |      |
|             |                                 | $V_{EN} = C0 = C1 = 0V$                                                             |      | 0.02 |      |      |
| IOFF        | Supply Current                  | V <sub>EN</sub> = 0 V, No RF, C0=C1=0 V<br>Measured on VCC, VDD pins                | -    | 20   | 50   | μA   |
| Venh        | Logic High Voltage              | -                                                                                   | 1.6  | -    | 3.6  | V    |
| Venl        | Logic Low Voltage               | -                                                                                   | -0.3 | -    | 0.3  | V    |
| Ienh        | Input Current Logic             | -                                                                                   | -    | 330  | 400  | μA   |



| Symbol | Parameter                          | Conditions | Min. | Тур. | Max. | Unit |
|--------|------------------------------------|------------|------|------|------|------|
|        | High Voltage                       |            |      |      |      |      |
| Ienl   | Input Current Logic<br>Low Voltage | -          | -    | <1   | -    | μA   |

# Switch Logic Characteristics

Conditions: V<sub>CC</sub> = V<sub>EN</sub> = 3.3 V, T<sub>A</sub> = 25 °C, as measured on Skyworks Solutions' SE5007T-EK1 evaluation board, all unused ports terminated with 50 ohms, unless otherwise noted.

| Symbol | Parameter                           | Conditions                         | Min. | Тур. | Max. | Unit |
|--------|-------------------------------------|------------------------------------|------|------|------|------|
| ON     | Low Loss Switch<br>Control Voltage  | High State = Vctl_on -<br>Vctl_off | 2.8  | -    | 3.6  | V    |
| OFF    | High Loss Switch<br>Control Voltage | Low State = Vctl_OFF -<br>Vctl_OFF | 0    | -    | 0.3  | V    |
| Ссть   | Control Input<br>Capacitance        | -                                  | -    | -    | 100  | pF   |
| ICTL   | Control Line Current                | VCTL = VCTL_ON                     | -    | 2    | 10   | uA   |

# Switch Control Logic Table

| C0  | C1  | EN                 | Hi/L Lin | ANT               |
|-----|-----|--------------------|----------|-------------------|
| ON  | OFF | ON                 | OFF      | TX Low Linearity  |
| ON  | OFF | ON                 | ON       | TX High Linearity |
| OFF | OFF | OFF                | D/C      | Rx Bypass         |
| OFF | ON  | OFF                | D/C      | Rx LNA ON         |
| ON  | ON  | Un-supported state |          |                   |



#### **AC Electrical Characteristics**

#### Transmit Characteristics

Conditions: V<sub>CC1</sub> = V<sub>CC2</sub> = V<sub>DD</sub> = V<sub>EN</sub> = C0 = H/L Lin = 3.3V, C1 = 0V, T<sub>A</sub> = 25 °C, as measured on Skyworks Solutions' SE5007T-EV1 evaluation board, unless otherwise noted

| Symbol           | Parameter                                           | Condit                                                           |                     | Min.                                                              | Тур.       | Max.   | Unit        |
|------------------|-----------------------------------------------------|------------------------------------------------------------------|---------------------|-------------------------------------------------------------------|------------|--------|-------------|
| f∟-∪             | Frequency Range                                     | -                                                                |                     | 4.90                                                              | -          | 5.85   | GHz         |
|                  |                                                     | 802.11a,                                                         | EVM = 3%            | -                                                                 | 17         | -      |             |
|                  | Output Power,                                       | 64 QAM                                                           | EVM = 2%            | -                                                                 | 15         | -      |             |
|                  | High Linearity Mode<br>H/L Lin = 3.3V               | VCC1 = 4.0V,<br>3% EVM                                           | EVM = 3%            | -                                                                 | 19         | -      |             |
| POUT             | OFDM                                                | MCS0, HT20, ma                                                   | sk compliant        | -                                                                 | 21         | -      | dBm         |
|                  |                                                     | MCS0, HT40, ma                                                   | sk compliant        | -                                                                 | 20         | -      |             |
|                  | Output Power,<br>Low Linearity Mode<br>H/L Lin = 0V | 802.11a, 64 QAM                                                  | l, EVM = 3%         | -                                                                 | 13         | -      |             |
|                  |                                                     | MCS0, HT20, ma                                                   | sk compliant        | -                                                                 | 17         | -      |             |
|                  | OFDM                                                | MCS0, HT40, ma                                                   | sk compliant        | -                                                                 | 16         | -      |             |
| P <sub>1dB</sub> | Output 1dB<br>compression point                     | No modulation                                                    |                     | -                                                                 | 24         | -      | dBm         |
| S11              | Input Return Loss                                   | P <sub>IN</sub> = -25 dBm                                        |                     | -                                                                 | 14         | -      | dB          |
| <b>S</b> 21      | Small Signal Gain,                                  | High Linearity Mo                                                | High Linearity Mode |                                                                   | 31         | -      | dB          |
| 321              | $P_{IN} = -25 dBm$                                  | Low Linearity Mo                                                 | de                  | 26                                                                | 30         | -      |             |
| <b>ΔS</b> 21     | Small Signal Gain                                   | Gain variation over single<br>40MHz channel                      |                     | -                                                                 | -          | 0.5    | - dB        |
| <u> </u>         | Variation                                           | Gain Variation over band                                         |                     | -1.5                                                              | -1.5 - 1.5 | üВ     |             |
| S21_3.8          | Out of Band Gain                                    | Gain at 3.8GHz                                                   |                     | -                                                                 | -          | 15     | dB          |
| 2f               | Harmonic                                            | Роит <b>= 17 dBm</b> , C                                         |                     | -                                                                 | -50        | -42    | dBm/MHz     |
| 3f               | Harmonic                                            |                                                                  |                     | -                                                                 | -50        | -42    | dDin//Min/2 |
| tr, tr           | Rise and Fall Time                                  | -                                                                |                     | -                                                                 | 0.5        | -      | us          |
| STAB             | Stability                                           | Pout = 17 dBm, 5<br>QAM, VSWR = 6                                |                     | All non-harmonically related outputs less<br>than -50 dBc/100 kHz |            |        |             |
| Rugged-<br>ness  | Tolerance to output load mismatching                | Constant P <sub>IN</sub> equa<br>dBm at 50ohms,<br>QAM, VSWR = 6 | 54 Mbps, 64         | No damage                                                         |            |        |             |
| Robust           | Robustness to input power                           | P <sub>IN</sub> = 12dBm, CW<br>all phases                        | /, VSWR = 6:1,      |                                                                   | No c       | lamage |             |



#### **Receive Characteristics**

| Conditions: | Vcc = C1 = 3.3V, Ven = C0 = 0V, TA = 25 °C, as measured on Skyworks Solutions' SE5007T-EK1 |
|-------------|--------------------------------------------------------------------------------------------|
|             | evaluation board, all unused ports terminated with 50 ohms, unless otherwise noted.        |

| Symbol              | Parameter                             | Condition                                 | Min. | Тур. | Max. | Unit |
|---------------------|---------------------------------------|-------------------------------------------|------|------|------|------|
| Fout                | Frequency Range                       | -                                         | 4.9  | -    | 5.85 | GHz  |
| RX                  | Insertion Loss                        | Bypass Mode: C0 = C1 = 0V                 | -    | -5   | -    | dB   |
| КХ                  | RX Gain                               | High Gain Mode                            | 11   | 12   | -    | uБ   |
| NF                  | Noise Figure                          | High Gain Mode                            | -    | 2.5  | -    | dB   |
|                     | Input Return Loss                     | At the Antenna port                       | -    | 12   | -    | dB   |
| RXrl                | Output Return<br>Loss                 | At RX RF output                           | -    | 7    | -    |      |
| RxIP1DB             | Input P1DB                            | Measured at ANT Port; High Gain<br>Mode   | -    | -5   | -    | dBm  |
|                     |                                       | LNA Bypass Mode                           | -    | 10   | -    |      |
| Rx_2.4int           | Max 2.4Ghz<br>interferer<br>Amplitude | 1 dB degradation of IP1DB                 | -    | -10  | -7   | dBm  |
| T <sub>on/off</sub> | T/R on/off<br>switching speed         | C0, C1 (50%) to RF output (10% or<br>90%) | -    | 300  | -    | nSec |



#### **Power Detector Characteristics**

Conditions: Vcc = VEN =C0 = 3.3V, C1 = 0V, f = 5.4 GHz, TA = 25 °C, as measured on Skyworks Solutions' SE5007T-EV1 evaluation board, unless otherwise noted

| Symbol             | Parameter         | Conditions           | Min. | Тур. | Max.             | Unit |
|--------------------|-------------------|----------------------|------|------|------------------|------|
| PDR                | Pout detect range | -                    | 0    | -    | P <sub>1dB</sub> | dBm  |
| VDET <sub>22</sub> | Detector voltage  | Роит <b>= 22 dBm</b> | 0.7  | -    | 0.9              | V    |
| VDET <sub>16</sub> | Detector voltage  | Роит <b>= 16 dBm</b> | 0.50 | -    | 0.60             | V    |
| VDET <sub>2</sub>  | Detector voltage  | Роит <b>= 2 dBm</b>  | 0.25 | -    | 0.35             | V    |
| PDZout             | Output Impedance  | -                    | -    | 5    | -                | KΩ   |

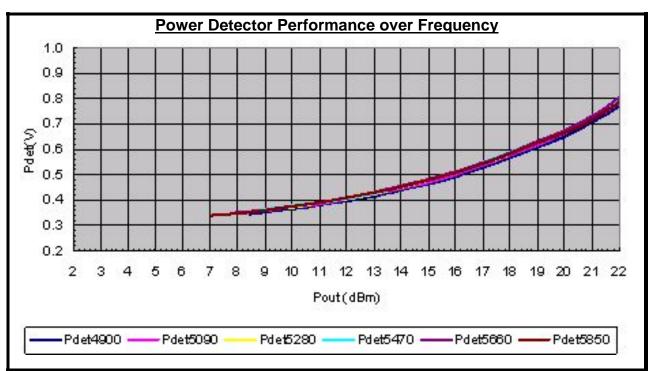



Figure 3: SE5007T Power Detector Characteristic



#### Package Diagram

This package is Pb free and RoHS compliant. The product is rated MSL1.

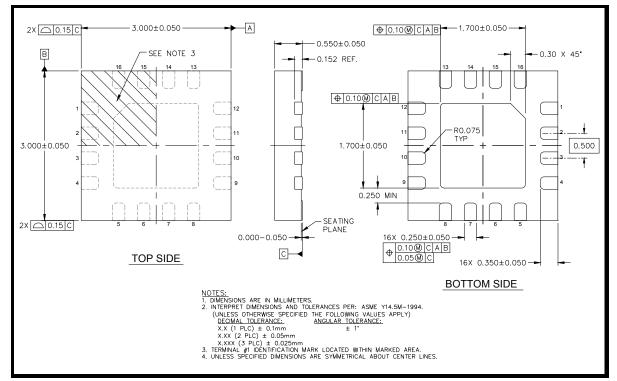



Figure 4: SE5007T Package Diagram



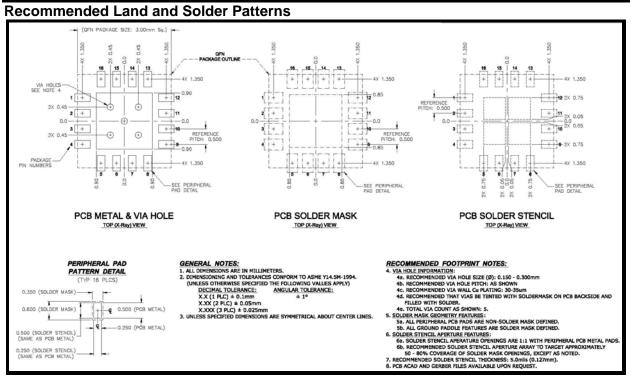



Figure 5: SE5007T Recommended Land and Solder Pattern

#### **Package Handling Information**

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE5007T is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended, please refer to:

- "Quad Flat No-Lead Module Solder Reflow & Rework Information", Document Number QAD-00045
- Handling, Packing, Shipping and Use of Moisture Sensitive QFN", Document Number QAD-00044



#### Branding Information

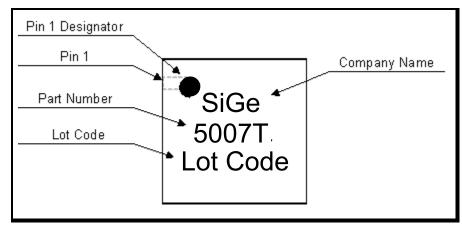



Figure 6: SE5007T Branding

# Tape and Reel Information

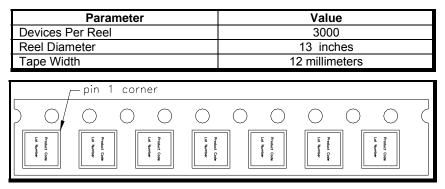



Figure 7: SE5007T-R Tape and Reel Information

#### **Document Change History**

| Revision | Date         | Notes                                                                                                                                                    |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0      | Jun 24, 2010 | Created                                                                                                                                                  |
| 1.1      | Jul 2, 2010  | Corrected control logic table                                                                                                                            |
| 1.2      | Jul 7, 2010  | Expanded frequency range to 4.9GHz to 5.85GHz<br>Expanded operating temperature range to -40 to +85<br>Changed VDD supply from 2.5V to 3.3V <u>+</u> 10% |
| 1.3      | Jul 14, 2010 | Removed reference to incorrect part number.                                                                                                              |
| 1.4      | Sep 30, 2010 | Updated RX output return loss (S22) limit                                                                                                                |
| 1.5      | Oct 05, 2010 | Updated the Block Diagram                                                                                                                                |
| 1.6      | Dec 20, 2010 | Corrected RX Conditions in Control Logic table                                                                                                           |



| Revision | Date         | Notes                                                                                      |  |
|----------|--------------|--------------------------------------------------------------------------------------------|--|
| 1.7      | Jan 03, 2011 | Update recommended storage temperature.<br>Updated ESD rating<br>Updated max limit on VCC2 |  |
| 1.8      | Feb 8, 2011  | Added 4V operation                                                                         |  |
| 1.9      | Apr 25, 2011 | Update $V_{ENH}$ min spec from 2.8V to 1.6V                                                |  |
| 2.0      | Apr 03, 2012 | Updated with Skyworks logo and disclaimer statement                                        |  |

Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Thirdparty brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Skyworks manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB