SKYWORKS

DATA SHEET

SKY13292-365LF: 0.25-2.15 GHz 4x2 Switch Matrix with Tone/Voltage Decoder

Applications

- DBS switching systems
- cable TV/modems

Features

- Broadband frequency range: 0.25 to 2.15 GHz
- Tone and voltage, or mode control switching
- High isolation: 40 dB typical @ 900 MHz
- Four RF inputs, two RF outputs
- Low current consumption: 8.5 mA typical @ 5 V
- Miniature QFN (20-pin, $4 \times 4 \mathrm{~mm}$) package. (MSL1, $260^{\circ} \mathrm{C}$ per JEDEC J-STD-020)

NEW

Skyworks offers lead (Pb)-free, RoHS_Restrigtion of
Hazardous Substances) compliant packaging. Hazardous Substances) compliantpackaging.

Description

The SKY13292-365LF is a four-input to two-output switch matrix intended for Direct Broadcast Satellite (DBS) switching and cable TV/modem applications. The SKY13292-365LF enables 16 states, directing any of the four inputs to either of the two outputs. Switch states are selected using tone and voltage signals together with logic levels applied to mode control inputs. The switch can operate over a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
The SKY13292-365LF is manufactured in a compact, $4 \times 4 \mathrm{~mm}$, 20-pin Quad Flat No-Lead (QFN) package.
A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Table 1. SKY13292-365LF Signal Descriptions

Pin \#	Name	Description				Name	Description	Signal Type	I/0
1	OUT1	RF channel output \#1 250 to 2150 MHz			11	13	$\begin{aligned} & \text { RF input \#3, } \\ & 250 \text { to } 2150 \mathrm{MHz} \end{aligned}$	RF	I
2	T1	Tone detector input \#1			12	CT	No connection. This pin must be left open.	DC	-
3	V1	Voltage detector input \#	C	1	13	V2	Voltage detector input \#2	DC	I
4	CR	No connection. This pin must be left open.	DC	-	14	T2	Tone detector input \#2	AC	I
5	11	$\begin{aligned} & \text { RF input \#1, } \\ & 250 \text { to } 2150 \mathrm{MHz} \end{aligned}$	RF	1	15	OUT2	RF channel output \#2, 250 to 2150 MHz	RF	0
6	GND	Ground	GND	-	16	N/C	No connection. This pin must be left open.	DC	-
7	12	$\begin{aligned} & \text { RF input \#2, } \\ & 250 \text { to } 2150 \mathrm{MHz} \end{aligned}$	RF	1	17	B2	Mode control input \#2	DC	I
8	GND	Ground	GND	-	18	B1	Mode control input \#1	DC	I
9	14	RF input \#4, 250 to 2150 MHz	RF	I	19	P0	Mode control input \#0		
10	GND	Ground	GND	-	20	VDD	Supply voltage, +5 V	DC	I

Technical Description

The SKY13292-365LF is controlled by a pair of DC voltage levels applied to V1 (pin 3) and V2 (pin 13) combined with 22 kHz signal levels applied to T 1 (pin 2) and T2 (pin 14). These signals are supplied from a set top box, receiver, etc., that is controlled by the user.

The configuration of the switch, itself, is controlled by the logic levels applied to P0 (pin 19), B1 (pin 18), and B2 (pin 17).
A pair of SKY13292-365LF 4x2 switches can be used to form a 4×4 switch. Figure 3 shows a suggested implementation in which
one of the 4×2 switches is mounted on the top side of a printed circuit board, with the second 4×2 switch mounted on the back side of the printed circuit board.
The four RF input signals, which may come from a variety of sources but are shown here coming from four separate low-noise block converters, are split and routed directly to the inputs of the top-side switch and through vias to the inputs of the back-side switch.

Figure 3. Suggested Implementation of Two 4x2 Switches

With each of the configuration inputs ($\mathrm{P} 0, \mathrm{~B} 1$, and B 2) of the topside switch held at 0 V , and each of the configuration inputs of the back-side switch held at 5 V , the same logic controls from each of the 4 receivers selects any specific input signal.
For example, if the user of receiver 1 wants to receive the signal from antenna 1, polarization 1, through low-noise block A, that receiver must send a 22 kHz tone and a control voltage greater than the threshold voltage to switch 1 . If the user of receiver 3 also wants to receive the signal from antenna 1, polarization 1, through low-noise block A, that receiver must also send a 22 kHz tone and a control voltage greater than the threshold voltage to switch 2.

Other logic configurations are possible. Refer to the truth Tables in this Data Sheet.

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY13292-365LF are provided in Table 2. Electrical specifications are provided in Table 3.

Typical performance characteristics of the SKY13292-365LF are illustrated in Figures 4 through 9.
The state of the SKY13292-365LF is determined by the logic provided in Tables 4 through 13.

Table 2. SKY13292-365LF Absolute Maximum Ratings

Parameter	Symbol	Minimum	Typical	Maximum	Units
Supply voltage	VDD			5.5	V
Mode select input voltage				5.5	V
Polarization input control voltage				21	V
RF input power	PIN			+15	dBm
Storage temperature	Tsta	-65		+150	${ }^{\circ} \mathrm{C}$
Operating temperature	Top	-40		+85	${ }^{\circ} \mathrm{C}$

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

CAUTION: Although this device is designed to be as robust as possible, Electrostatic Discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Table 3. SKY13292-365LF Electrical Specifications (Note1) (1 of 2) (Vod = 0 and 5 V , Top $=+25^{\circ} \mathrm{C}$, Characteristic Impedance $\left[Z_{0}\right]=50 \Omega_{\text {, Unless }}{ }^{\circ}$ Otherwise Noted)

Parameter	Sym	Test Condition	Min	Typical	Max	Units
Tone frequency	1, TF2	$\mathrm{F}=100 \mathrm{mVp}-\mathrm{p}$, with	18	22	26	kHz
Tone threshold voltage (Note 2)	TT	22 kHz	100	170	350	mVp-p
RF Switch Specifications						
Insertion loss	IL	$\begin{aligned} & 0.25 \text { to } 0.95 \mathrm{GHz} \\ & 0.95 \text { to } 2.15 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Insertion loss flatness		$\begin{aligned} & 0.25 \text { to } 0.95 \mathrm{GHz} \\ & 0.95 \text { to } 2.15 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.7 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	Iso	Normalized to insertion loss 0.25 to 0.95 GHz 0.95 to 2.15 GHz	$\begin{aligned} & 38 \\ & 28 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input return loss		$\begin{aligned} & 0.25 \text { to } 0.95 \mathrm{GHz} \\ & \mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 4 \\ & \text { OUT1, OUT2 } \end{aligned}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
1 dB Input Compression Point	IP1dB	0.25 to 0.95 GHz		+15		dBm
Tone/Voltage Detector Specifications						
Polarization select input current	IPT1, IPT2	VP1 and VP2 = 21 V		200		$\mu \mathrm{A}$
Polarization select threshold voltage	VTP1, VTP2		14.0	14.5	15.0	V
Polarization switching time	Tspol			0.9		$\mu \mathrm{s}$
Tone frequency	Tf1, Tf2		7	22	650	kHz
Tone threshold voltage	T 11 , Tt2	@ 22 kHz without external capacitor	45	170	900	Vp-p
Tone input impedance	Tzin1, Tzin2	@ 22 kHz including external 10 nF series blocking capacitor		2		k Ω

Table 3. SKY13292-365LF Electrical Specifications (Note 1) (2 of 2)
(Vod = 0 and 5 V , $\mathrm{T}_{\mathrm{op}}=+\mathbf{2 5}^{\circ} \mathrm{C}$, Characteristic Impedance $\left[Z_{0}\right]=50 \Omega$, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Mode Control Specifications						
Control input current	IJIG	$0 \mathrm{~V} \leq \mathrm{V}$ CTRL $\leq \mathrm{V}_{\text {dd }}$		1		$\mu \mathrm{A}$
Control input low logic level	V Low		0		1	V
Control input high logic level	VHIGH		VDD - 1	Vdd	VDD +0.5	V
Power Supply						
Supply voltage	VdD		4.0	5.0	5.5	V
Supply current	IDD			8.5		mA

Note 1: Performance is guaranteed only under the conditions listed in this Table.
Note 2: The SKY13292-365LF detects 22 kHz signaling amplitudes across the full specified range of the DiSEqC bus functional

Typical Performance Characteristics

(Vod = 5 V , ToP $=+25^{\circ} \mathbf{C}$, PIN $=0 \mathrm{dBm}$, Characteristic Impedance $[Z \mathrm{Ol}=50 \Omega$, Unless Otherwise Noted)

Figure 6. I3 to OUT1 and I3 to OUT2 Paths for States $\mathbf{0}$ to 15

Figure 5. I2 to OUT1 and I2 to OUT2 Paths for States $\mathbf{0}$ to 15

Figure 7. I4 to OUT1 and I4 to OUT2 Paths for States $\mathbf{0}$ to 15

Figure 8. I1, I2, I3, and I4 for States 0 to 15

Figure 9, OUT1 and 12 to OUT2 Paths for States 0 to 15

Table 4. SKY13292-365LF Truth Table: Mode Control Summary

Mode Paths	Mode			in 1	$\begin{gathered} 11 \\ (\text { Pin } 5) \end{gathered}$	$\begin{gathered} 12 \\ (\text { Pin } 7) \end{gathered}$	$\begin{gathered} 14 \\ (\text { Pin } 9) \end{gathered}$	$\begin{gathered} 13 \\ \text { (Pin 11) } \end{gathered}$
	0			0	A	B	C	D
	1	0	0	1	A	B	D	C
${ }_{1_{1}}^{I_{3}}$ Mode 2 (010): $P_{0}=0 V, B_{1}=5 \mathrm{~V}, \mathrm{~B}_{\mathbf{2}}=0$	2	0	1	0	B	A	C	D
	3	0	1	1	B	A	D	C
	4	1	0	0	C	D	A	B
	5	1	0	1	C	D	B	A
Mode 6 (110): $P_{0}=5 \mathrm{~V}, \mathrm{~B}_{1}=5 \mathrm{~V}, \mathrm{~B}_{\mathbf{2}}=0$	6	1	1	0	D	C	A	B
	7	1	1	1	D	C	B	A

Table 5. SKY13292-365LF Truth Table: General

State	Tone and Voltage Inputs (Note 1)				Signal Paths
	$\begin{gathered} \text { T1 } \\ \text { (Pin 2) } \end{gathered}$	$\begin{gathered} \text { V1 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{gathered} \text { T2 } \\ \text { (Pin 14) } \end{gathered}$	$\begin{gathered} \text { V2 } \\ \text { (Pin 13) } \end{gathered}$	
1	No Tone	VLow	No Tone	VLow	D \rightarrow OUT1, D \rightarrow OUT2
2	No Tone	V Low	No Tone	VHIGH	D \rightarrow OUT1, B \rightarrow OUT2
3	No Tone	V Low	22 kHz Tone	VLow	D \rightarrow OUT1, $\mathrm{C} \rightarrow$ OUT2
4	No Tone	VLow	22 kHz Tone	VHIGH	D \rightarrow OUT1, A \rightarrow OUT2
5	No Tone	VHIGH	No Tone	V Low	\rightarrow OUT1, D \rightarrow OUT2
6	No Tone	VHIGH	No Tone	VHIGH	$\mathrm{B} \rightarrow$ OUT1, B \rightarrow OUT2
7	No Tone	VHIGH	22 kHz Tone	,	\rightarrow OUT1, $\mathrm{C} \rightarrow$ OUT2
8	No Tone	VHIGH	22 kHz Tone		\rightarrow OUT1, A \rightarrow OUT2
9	22 kHz Tone	V Low	No Tone	VLow	\rightarrow OUT1, D \rightarrow OUT2
10	22 kHz Tone	V Low	No		\rightarrow OUT1, B \rightarrow OUT2
11	22 kHz Tone	V Low	kHz Tone		$\mathrm{C} \rightarrow$ OUT1, $\mathrm{C} \rightarrow$ OUT2
12	22 kHz Tone	V Low	22 kHz To		$\mathrm{C} \rightarrow$ OUT1, $\mathrm{A} \rightarrow$ OUT2
13	22 kHz Tone	VHIG		V Low	A \rightarrow OUT1, D \rightarrow OUT2
14	22 kHz Tone		OTon	VHIGH	A \rightarrow OUT1, B \rightarrow OUT2
15	22 kHz Tone		kHzFone	V Low	A \rightarrow OUT1, C \rightarrow OUT2
16	22 kHz Tone		kHz Tone	VHIGH	A \rightarrow OUT1, A \rightarrow OUT2

Note 1: "No Tone" $=$ no 22 kHz tone present " 22 kHz Tone" $=22 \mathrm{kHz}$ tone present with amplitude $>100 \mathrm{mVp}-\mathrm{p}$
VLow $\leq 14 \mathrm{~V}$
VHIGH $\geq 15 \mathrm{~V}$

Table 6. SKY13292-365LF Truth Table: Tone and Voltage Controls
Mode 0 (000): P0 = B1 = B2 = $\mathbf{0}$ V (Default State)

State	Tone and Voltage Inputs (Note 1)				Signal Paths
	$\begin{gathered} \text { T1 } \\ \text { (Pin 2) } \end{gathered}$	$\begin{gathered} \text { V1 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{gathered} \text { T2 } \\ (\operatorname{Pin} 14) \end{gathered}$	$\begin{gathered} \text { V2 } \\ \text { (Pin 13) } \end{gathered}$	
1	No Tone	VLow	No Tone	VLow	I3 \rightarrow OUT1, I3 \rightarrow OUT2
2	No Tone	V Low	No Tone	VHIGH	I3 \rightarrow OUT1, I2 \rightarrow OUT2
3	No Tone	V Low	22 kHz Tone	V Low	I3 \rightarrow OUT1, I4 \rightarrow OUT2
4	No Tone	V Low	22 kHz Tone	Vhigh	I3 \rightarrow OUT1, I1 \rightarrow OUT2
5	No Tone	VHIGH	No Tone	V Low	\rightarrow OUT1, I3 \rightarrow OUT2
6	No Tone	VHIGH	No Tone		\rightarrow OUT1, 12 \rightarrow OUT2
7	No Tone	VHIGH	22 kHz Tone	VLO	\rightarrow OUT1, $14 \rightarrow$ OUT2
8	No Tone	VHIGH	22 kHz Tone	,	$2 \rightarrow$ OUT1, I1 \rightarrow OUT2
9	22 kHz Tone	V Low	No To	Low	\rightarrow OUT1, I3 \rightarrow OUT2
10	22 kHz Tone	V Low	Tone		$14 \rightarrow$ OUT1, I2 \rightarrow OUT2
11	22 kHz Tone	V Low	2 kHz		$14 \rightarrow$ OUT1, I4 \rightarrow OUT2
12	22 kHz Tone	V Low	kHz	Vhigh	I4 \rightarrow OUT1, I \rightarrow OUT2
13	22 kHz Tone		Ton	V Low	I \rightarrow OUT1, I3 \rightarrow OUT2
14	22 kHz Tone		T	VHIGH	$\mathrm{I} 1 \rightarrow$ OUT1, I2 \rightarrow OUT2
15	22 kHz Tone	VHIG	Iz Tone	V Low	I1 \rightarrow OUT1, I4 \rightarrow OUT2
16	22 kHz Tone		22 kHz Tone	VHIGH	I1 \rightarrow OUT1, I1 \rightarrow OUT2

Note 1: "No Tone" = no 22 kHz tone present " 22 kHz Tone" $=22 \mathrm{kHz}$ tone present with amplitude $>100 \mathrm{mvp} \mathrm{p}$
VLow $\leq 14 \mathrm{~V}$
VHIGH $\geq 15 \mathrm{~V}$

Table 7. SKY13292-365LF Truth Table: Tone and Voltage Controls
Mode 1 (001): P0 = B1 = 0 V, B2 = 5 V

State	Tone and Voltage Inputs (Note 1)				Signal Paths
	$\begin{gathered} \text { T1 } \\ \text { (Pin 2) } \end{gathered}$	$\begin{gathered} \text { V1 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{gathered} \text { T2 } \\ \text { (Pin 14) } \end{gathered}$	$\begin{gathered} \hline \text { V2 } \\ \text { (Pin 13) } \end{gathered}$	
1	No Tone	VLow	No Tone	VLow	$14 \rightarrow$ OUT1, $14 \rightarrow$ OUT2
2	No Tone	V Low	No Tone	VHIGH	$14 \rightarrow$ OUT1, I2 \rightarrow OUT2
3	No Tone	V Low	22 kHz Tone	V Low	$14 \rightarrow$ OUT1, I3 \rightarrow OUT2
4	No Tone	V Low	22 kHz Tone	Vhigh	$14 \rightarrow$ OUT1, I1 \rightarrow OUT2
5	No Tone	Vhigh	No Tone	V Low	\rightarrow OUT1, $14 \rightarrow$ OUT2
6	No Tone	VHIGH	No Tone	Ha	$2 \rightarrow$ OUT1, I2 \rightarrow OUT2
7	No Tone	Vhigh	22 kHz Tone	VL	$12 \rightarrow$ OUT1, I3 \rightarrow OUT2
8	No Tone	Vhigh	22 kHz Tone	MIC	$12 \rightarrow$ OUT1, I1 \rightarrow OUT2
9	22 kHz Tone	V Low	No Ton		\rightarrow OUT1, I4 \rightarrow OUT2
10	22 kHz Tone	V Low	龶		I3 \rightarrow OUT1, I2 \rightarrow OUT2
11	22 kHz Tone	V Low	khz		I3 \rightarrow OUT1, I3 \rightarrow OUT2
12	22 kHz Tone	V Low	kHz	VHIGH	I3 \rightarrow OUT1, I1 \rightarrow OUT2
13	22 kHz Tone		on	V Low	I1 \rightarrow OUT1, I4 \rightarrow OUT2
14	22 kHz Tone		O	VHIGH	$\mathrm{I} 1 \rightarrow$ OUT1, I2 \rightarrow OUT2
15	22 kHz Tone	VHIC	Hz Tone	V Low	I1 \rightarrow OUT1, I3 \rightarrow OUT2
16	22 kHz Tone		22 kHz Tone	VHIGH	$\mathrm{I} 1 \rightarrow$ OUT1, I1 \rightarrow OUT2

Note 1: "No Tone" = no 22 kHz tone present
" 22 kHz Tone" $=22 \mathrm{kHz}$ tone present with amplitude $>100 \mathrm{myv}-\mathrm{p}$
VLow $\leq 14 \mathrm{~V}$
VHIGH $\geq 15 \mathrm{~V}$

Table 8. SKY13292-365LF Truth Table: Tone and Voltage Controls
Mode 2 (010): P0 = $\mathbf{0}$ V, B1 = 5 V, B2 = 0 V

State	Tone and Voltage Inputs (Note 1)				Signal Paths
	$\begin{gathered} \mathrm{T} 1 \\ (\operatorname{Pin} 2) \end{gathered}$	$\begin{gathered} \text { V1 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{gathered} \text { T2 } \\ \text { (Pin 14) } \end{gathered}$	$\begin{gathered} \hline \text { V2 } \\ \text { (Pin 13) } \end{gathered}$	
1	No Tone	VLow	No Tone	VLow	I3 \rightarrow OUT1, I3 \rightarrow OUT2
2	No Tone	VLow	No Tone	VHIGH	$13 \rightarrow$ OUT1, I1 \rightarrow OUT2
3	No Tone	VLow	22 kHz Tone	V.ow	$13 \rightarrow$ OUT1, I4 \rightarrow OUT2
4	No Tone	VLow	22 kHz Tone	Vнigh	$13 \rightarrow$ OUT1, I2 \rightarrow OUT2
5	No Tone	VHIGH	No Tone	VLow	\rightarrow OUT1, I3 \rightarrow OUT2
6	No Tone	VHIGH	No Tone	Hill	I1 \rightarrow OUT1, I1 \rightarrow OUT2
7	No Tone	VHIGH	22 kHz Tone	VLown	1 OUf1, $14 \rightarrow$ OUT2
8	No Tone	VHIGH	22 kHz Tone	Vhigh	$11 \rightarrow$ OUT1, $12 \rightarrow$ OUT2
9	22 kHz Tone	VLow	No Tone	VLow	\rightarrow OUT1, I3 \rightarrow OUT2
10	22 kHz Tone	VLow	on		$14 \rightarrow$ OUT1, I1 \rightarrow OUT2
11	22 kHz Tone	Vow			$14 \rightarrow$ OUT1, I4 \rightarrow OUT2
12	22 kHz Tone			VHIGH	$14 \rightarrow$ OUT1, I2 \rightarrow OUT2
13	22 kHz Tone			Vow	$12 \rightarrow$ OUT1, I3 \rightarrow OUT2
14	22 kHz Tone		No Ton	VHIGH	I2 \rightarrow OUT1, I1 \rightarrow OUT2
15	22 kHz Tone		Hz Tone	V.ow	I2 \rightarrow OUT1, $14 \rightarrow$ OUT2
16	22 kHz Tone		22 kHz Tone	VHIGH	I2 \rightarrow OUT1, I2 \rightarrow OUT2

Note 1: "No Tone" = no 22 kHz tone present
" 22 kHz Tone" $=22 \mathrm{kHz}$ tone present with amplitude $>100 \mathrm{myv}-\mathrm{p}$
VLow $\leq 14 \mathrm{~V}$
VHIGH $\geq 15 \mathrm{~V}$

Table 9. SKY13292-365LF Truth Table: Tone and Voltage Controls
Mode 3 (011): P0 = 0 V, B1 = B2 = 5 V

State	Tone and Voltage Inputs (Note 1)				Signal Paths
	$\begin{gathered} \text { T1 } \\ \text { (Pin 2) } \end{gathered}$	$\begin{gathered} \text { V1 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{gathered} \text { T2 } \\ \text { (Pin 14) } \end{gathered}$	$\begin{gathered} \text { V2 } \\ \text { (Pin 13) } \end{gathered}$	
1	No Tone	V Low	No Tone	V Low	I4 \rightarrow OUT1, I4 \rightarrow OUT2
2	No Tone	V Low	No Tone	VHIGH	I4 \rightarrow OUT1, I1 \rightarrow OUT2
3	No Tone	V Low	22 kHz Tone	V Low	I $4 \rightarrow$ OUT1, I3 \rightarrow OUT2
4	No Tone	V Low	22 kHz Tone	VHIGH	$\mathrm{I} 4 \rightarrow$ OUT1, I2 \rightarrow OUT2
5	No Tone	Vhigh	No Tone	V Low	$1 \rightarrow$ OUT1, I4 \rightarrow OUT2
6	No Tone	VHIGH	No Tone	VHIGH	I1 \rightarrow OUT1, I1 \rightarrow OUT2
7	No Tone	VHIGH	22 kHz Tone	VL	$11 \rightarrow$ OUT1, $13 \rightarrow$ OUT2
8	No Tone	VHIGH	22 kHz Tone	/hic	$11 \rightarrow 0 \cup T 1, \mathrm{I} 2 \rightarrow$ OUT2
9	22 kHz Tone	V Low	No Tone	-	$3 \rightarrow$ OUT1, 14 \rightarrow OUT2
10	22 kHz Tone	V Low	ne		I3 \rightarrow OUT1, I1 \rightarrow OUT2
11	22 kHz Tone	V Low	khz		I3 \rightarrow OUT1, I3 \rightarrow OUT2
12	22 kHz Tone	V Low	2 kHz	VHIGH	I3 \rightarrow OUT1, I2 \rightarrow OUT2
13	22 kHz Tone		n	V Low	I2 \rightarrow OUT1, I4 \rightarrow OUT2
14	22 kHz Tone		To	VHIGH	I2 \rightarrow OUT1, I1 \rightarrow OUT2
15	22 kHz Tone	VHIC	Hz Tone	V Low	$\mathrm{I} 2 \rightarrow$ OUT1, $\mathrm{I} 3 \rightarrow$ OUT2
16	22 kHz Tone		22 kHz Tone	VHIGH	$\mathrm{I} 2 \rightarrow$ OUT1, I2 \rightarrow OUT2

Note 1: "No Tone" = no 22 kHz tone present " 22 kHz Tone" $=22 \mathrm{kHz}$ tone present with amplitude $>100 \mathrm{mvp} \mathrm{p}$
VLow $\leq 14 \mathrm{~V}$
VHIGH $\geq 15 \mathrm{~V}$

Table 10. SKY13292-365LF Truth Table: Tone and Voltage Controls
Mode 4 (100): P0 = 5 V, B1 = B2 = 0 V

State	Tone and Voltage Inputs (Note 1)				Signal Paths
	$\begin{gathered} \text { T1 } \\ \text { (Pin 2) } \end{gathered}$	$\begin{gathered} \text { V1 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{gathered} \text { T2 } \\ (\operatorname{Pin} 14) \end{gathered}$	$\begin{gathered} \text { V2 } \\ \text { (Pin 13) } \end{gathered}$	
1	No Tone	Viow	No Tone	Vow	I2 \rightarrow OUT1, I2 \rightarrow OUT2
2	No Tone	VLow	No Tone	VнIGH	I2 \rightarrow OUT1, I3 \rightarrow OUT2
3	No Tone	VLow	22 kHz Tone	Vow	I2 \rightarrow OUT1, I1 \rightarrow OUT2
4	No Tone	Viow	22 kHz Tone	VнIGH	$2 \rightarrow$ OUT1, I $4 \rightarrow$ OUT2
5	No Tone	VHIGH	No Tone	Vow	\rightarrow OUT1, I2 \rightarrow OUT2
6	No Tone	VHIGH	No Tone	High	\rightarrow OUT1, I3 \rightarrow OUT2
7	No Tone	VнIGH	22 kHz Tone	VLo	OUT1, I1 \rightarrow OUT2
8	No Tone	VHIGH	22 kHz Tone	Vmigh	$3 \rightarrow$ OUT1, $14 \rightarrow$ OUT2
9	22 kHz Tone	V.ow	No Tone	Low	\rightarrow OUT1, I2 \rightarrow OUT2
10	22 kHz Tone	VLow	on		I \rightarrow OUT1, I3 \rightarrow OUT2
11	22 kHz Tone	VLow	kH		I1 \rightarrow OUT1, I1 \rightarrow OUT2
12	22 kHz Tone			VHIGH	I1 \rightarrow OUT1, I4 \rightarrow OUT2
13	22 kHz Tone			Vow	$14 \rightarrow$ OUT1, I2 \rightarrow OUT2
14	22 kHz Tone		No Ton	VнIGH	$14 \rightarrow$ OUT1, I3 \rightarrow OUT2
15	22 kHz Tone	Hic	Hz Tone	Vow	$14 \rightarrow$ OUT1, I1 \rightarrow OUT2
16	22 kHz Tone		22 kHz Tone	VHIGH	$14 \rightarrow$ OUT1, I4 \rightarrow OUT2

Note 1: "No Tone" = no 22 kHz tone present
" 22 kHz Tone" $=22 \mathrm{kHz}$ tone present with amplitude $>100 \mathrm{mvp} \mathrm{p}$
VLow $\leq 14 \mathrm{~V}$
VHIGH $\geq 15 \mathrm{~V}$

Table 11. SKY13292-365LF Truth Table: Tone and Voltage Controls
Mode 5 (101): P0 = 5 V, B1 = 0 V, B2 = 5 V

State	Tone and Voltage Inputs (Note 1)				Signal Paths
	$\begin{gathered} \text { T1 } \\ \text { (Pin 2) } \end{gathered}$	$\begin{gathered} \text { V1 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{gathered} \text { T2 } \\ \text { (Pin 14) } \end{gathered}$	$\begin{gathered} \text { V2 } \\ \text { (Pin 13) } \end{gathered}$	
1	No Tone	VLow	No Tone	V Low	I2 \rightarrow OUT1, I2 \rightarrow OUT2
2	No Tone	VLow	No Tone	Vhigh	I2 \rightarrow OUT1, I4 \rightarrow OUT2
3	No Tone	V Low	22 kHz Tone	V Low	$\mathrm{I} 2 \rightarrow$ OUT1, $\mathrm{I} 1 \rightarrow$ OUT2
4	No Tone	V Low	22 kHz Tone	Vhigh	$\mathrm{I} 2 \rightarrow$ OUT1, $\mathrm{I} 3 \rightarrow$ OUT2
5	No Tone	VHIGH	No Tone	V Low	$4 \rightarrow$ OUT1, I2 \rightarrow OUT2
6	No Tone	VHIGH	No Tone	V H1G	$4 \rightarrow$ OUT1, I4 \rightarrow OUT2
7	No Tone	VHIGH	22 kHz Tone	VLO	\rightarrow OUT1, $11 \rightarrow$ OUT2
8	No Tone	VHIGH	22 kHz Tone	VHIG	$4 \rightarrow$ OUT1, I3 \rightarrow OUT2
9	22 kHz Tone	V Low	No Ton	VLow	\rightarrow OUT1, I2 \rightarrow OUT2
10	22 kHz Tone	V Low	one		I1 \rightarrow OUT1, I4 \rightarrow OUT2
11	22 kHz Tone	V Low			$\mathrm{I} 1 \rightarrow$ OUT1, $\mathrm{I} 1 \rightarrow$ OUT2
12	22 kHz Tone	V Low	kHz	VHIGH	I \rightarrow OUT1, I3 \rightarrow OUT2
13	22 kHz Tone		on	V Low	I3 \rightarrow OUT1, I2 \rightarrow OUT2
14	22 kHz Tone		Io	VHIGH	I3 \rightarrow OUT1, I4 \rightarrow OUT2
15	22 kHz Tone	VII	Hz Tone	V Low	I3 \rightarrow OUT1, I1 \rightarrow OUT2
16	22 kHz Tone		22 kHz Tone	VHIGH	I3 \rightarrow OUT1, I3 \rightarrow OUT2

Note 1: "No Tone" = no 22 kHz tone present
" 22 kHz Tone" $=22 \mathrm{kHz}$ tone present with amplitude $>100 \mathrm{mvp} \mathrm{p}$
VLow $\leq 14 \mathrm{~V}$
VHIGH $\geq 15 \mathrm{~V}$

Table 12. SKY13292-365LF Truth Table: Tone and Voltage Controls
Mode 6 (110): P0 = B1 = 5 V, B2 = 0 V

State	Tone and Voltage Inputs (Note 1)				Signal Paths
	$\begin{gathered} \text { T1 } \\ \text { (Pin 2) } \end{gathered}$	$\begin{gathered} \text { V1 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{gathered} \text { T2 } \\ \text { (Pin 14) } \end{gathered}$	$\begin{gathered} \text { V2 } \\ (\text { Pin 13) } \end{gathered}$	
1	No Tone	VLow	No Tone	Viow	I1 \rightarrow OUT1, I1 \rightarrow OUT2
2	No Tone	VLow	No Tone	Vніg	I1 \rightarrow OUT1, I3 \rightarrow OUT2
3	No Tone	VLow	22 kHz Tone	VLow	I1 \rightarrow OUT1, 12 \rightarrow OUT2
4	No Tone	VLow	22 kHz Tone	VніG	$\mathrm{I} \rightarrow$ OUT1, I4 \rightarrow OUT2
5	No Tone	Vнїн	No Tone	VLow	\rightarrow OUT1, I1 \rightarrow OUT2
6	No Tone	Vнїн	No Tone	Vald	I3 \rightarrow OUT1, I3 \rightarrow OUT2
7	No Tone	Vніgн	22 kHz Tone	Low	\rightarrow OUT1, $12 \rightarrow$ OUT2
8	No Tone	Vніgн	22 kHz Tone	VIIGH	$13 \rightarrow$ OUT1, $14 \rightarrow$ OUT2
9	22 kHz Tone	VLow	No Tone	Low	\rightarrow OUT1, I1 \rightarrow OUT2
10	22 kHz Tone	VLow	Tone		I2 \rightarrow OUT1, I3 \rightarrow OUT2
11	22 kHz Tone	VLow	khz To		I2 \rightarrow OUT1, I2 \rightarrow OUT2
12	22 kHz Tone		kHz	VніG	I2 \rightarrow OUT1, I4 \rightarrow OUT2
13	22 kHz Tone			VLow	$14 \rightarrow$ OUT1, I1 \rightarrow OUT2
14	22 kHz Tone		O	VнIGH	$14 \rightarrow$ OUT1, I3 \rightarrow OUT2
15	22 kHz Tone	Hil	Hz Tone	Vow	$14 \rightarrow$ OUT1, $12 \rightarrow$ OUT2
16	22 kHz Tone		22 kHz Tone	VHIGH	$14 \rightarrow$ OUT1, I4 \rightarrow OUT2

Note 1: "No Tone" = no 22 kHz tone present
" 22 kHz Tone" $=22 \mathrm{kHz}$ tone present with amplitude $>100 \mathrm{mvp} \mathrm{p}$
VLow $\leq 14 \mathrm{~V}$
VHIGH $\geq 15 \mathrm{~V}$

Table 13. SKY13292-365LF Truth Table: Tone and Voltage Controls
Mode 7 (111): $\mathbf{P 0}=\mathbf{B 1}=\mathbf{B 2}=5 \mathbf{V}$

State	Tone and Voltage Inputs (Note 1)				Signal Paths
	$\begin{gathered} \text { T1 } \\ \text { (Pin 2) } \end{gathered}$	$\begin{gathered} \text { V1 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{gathered} \text { T2 } \\ (\operatorname{Pin} 14) \end{gathered}$	$\begin{gathered} \text { V2 } \\ \text { (Pin 13) } \end{gathered}$	
1	No Tone	VLow	No Tone	V Low	I1 \rightarrow OUT1, I1 \rightarrow OUT2
2	No Tone	V Low	No Tone	VHIGH	$\mathrm{I} 1 \rightarrow$ OUT1, I4 \rightarrow OUT2
3	No Tone	VLow	22 kHz Tone	V Low	$\mathrm{I} 1 \rightarrow$ OUT1, $\mathrm{I} 2 \rightarrow$ OUT2
4	No Tone	V Low	22 kHz Tone	VHIGH	$\mathrm{I} 1 \rightarrow$ OUT1, $13 \rightarrow$ OUT2
5	No Tone	VHIGH	No Tone	V Low	$14 \rightarrow$ OUT1, I1 \rightarrow OUT2
6	No Tone	VHIGH	No Tone		$14 \rightarrow$ OUT1, 14 \rightarrow OUT2
7	No Tone	VHIGH	22 kHz Tone	VLe	$14 \rightarrow$ 0UT1, $12 \rightarrow$ OUT2
8	No Tone	VHIGH	22 kHz Ton	VHIGH	$14 \rightarrow$ OUT1, I3 \rightarrow OUT2
9	22 kHz Tone	V Low	No Tone	vow	\rightarrow OUT1, I1 \rightarrow OUT2
10	22 kHz Tone	V Low			$\mathrm{I} 2 \rightarrow$ OUT1, $\mathrm{I} 4 \rightarrow$ OUT2
11	22 kHz Tone	V Low	2 kHz		$\mathrm{I} 2 \rightarrow$ OUT1, I2 \rightarrow OUT2
12	22 kHz Tone	VLow	K	VHIGH	$\mathrm{I} 2 \rightarrow$ OUT1, I3 \rightarrow OUT2
13	22 kHz Tone		on	V Low	I3 \rightarrow OUT1, I1 \rightarrow OUT2
14	22 kHz Tone			Vhigh	I3 \rightarrow OUT1, I4 \rightarrow OUT2
15	22 kHz Tone	VHic	kHz Tone	V Low	I3 \rightarrow OUT1, I2 \rightarrow OUT2
16	22 kHz Tone		22 kHz Tone	VHIGH	I3 \rightarrow OUT1, I3 \rightarrow OUT2

Note 1: "No Tone" = no 22 kHz tone present
" 22 kHz Tone" $=22 \mathrm{kHz}$ tone present with amplitude $>100 \mathrm{mvp} \mathrm{p}$
VLow $\leq 14 \mathrm{~V}$
VHIGH $\geq 15 \mathrm{~V}$

Evaluation Board Description

The SKY13292-365LF Evaluation Board is used to test the performance of the SKY13292-365LF 4x2 Switch Matrix. A recommended application schematic is provided in Figure 10. An assembly drawing for the Evaluation Board is shown in Figure 11.

Package Dimensions

The PCB layout footprint for the SKY13292-365LF is provided in Figure 12. Typical case markings are shown in Figure 13.
Package dimensions for the 20-pin QFN are shown in Figure 14,

S2008

Figure 10. SKY13292-365LF Recommended Application Circuit

Figure 11. SKY13292-365LF Evaluation Board Assembly Diagram

Figure 12. SKY13292-365LF PCB Layout Footprint (Top View)

All measurements are in millimeters.
Dimensioning and tolerancing according to ASME Y14.5M-1994.
Coplanarity applies to the exposed heat sink slug as well as the terminals.
Dimension applies to metalized terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.

Figure 14. SKY13292-365LF 20-Pin QFN Package Dimensions

Ordering Information

Model Name	Manufacturing Part Number	Evaluation Board Part Number
SKY13292-365LF 4x2 Switch Matrix	SKY13292-365LF	SK40555

Copyright © 2002-2010 Skyworks Solutions, Inc. All Rights Reserved.
Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Skyworks manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX AS222-92LF SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

