SKYWORIS

DATA SHEET

SKY65313-21: 900 MHz Transmit/Receive Front-End Module

Applications

- Automated meter reading
- Advanced metering infrastructure
- ISM systems

Features

- Transmit output power $>+30.5 \mathrm{dBm}$
- High efficiency PA
- Analog power control
- Receive path NF <1.9 dB
- LNA bypass mode
- Integrated control logic
- Internal RF match and bias circuits
- All RF ports internally DC blocked
- Shutdown mode
- Small footprint, MCM (28-pin, $6 \times 6 \mathrm{~mm}$) package (MSL3, $260^{\circ} \mathrm{C}$ per JEDEC J-STD-020)

Skyworks Green ${ }^{\text {TM }}$ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green ${ }^{T M}$, document number SQ04-0074.

Figure 1. SKY65313-21 Block Diagram

Description

The Skyworks SKY65313-21 is a high-performance, transmit/receive (T/R) front-end module (FEM). The device provides a complete T / R chain with T / R switches.
The device transmit chain features +30.5 dBm output power and a 40 percent power-added efficiency (PAE).
The device receive chain features a low noise amplifier (LNA) with a 1.4 dB noise figure (NF) and 16.6 dB gain. The cascaded NF and gain, taking into account the 0.5 dB insertion loss transmit/receive antenna switch, are 1.9 dB and 16.1 dB , respectively, which makes the SKY65313-21 ideal for medium power microwave links such as 900 MHz Industrial, Scientific and Medical (ISM) band applications.
The module also has a shut-down mode and LNA bypass mode to minimize power consumption.
The device is mounted in a 28 -pin, $6 \times 6 \mathrm{~mm}$ Multi-Chip Module (MCM) surface-mount technology (SMT) package, which allows for a highly manufacturable low-cost solution.
A block diagram of the SKY65313-21 is shown in Figure 1.The device package and pinout are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Figure 1. SKY65313-21 Pinout (Top View)

Table 1. SKY65313-21 Signal Descriptions

Pin	Name	Description	Pin	Name	
1	GND	Ground	15	GND	Ground
2	CTL1	Transmit/receive mode digital control input	16	VDD1	3.3 V power supply
3	CTL2	Shutdown mode digital control input	17	VCC_RX	3.3 V power supply
4	CTL3	Receive bypass mode digital control input	18	RX3	LNA and bypass switch output port. Internally matched to 50Ω.
5	VPC	Transmit output power analog control voltage input	19	GND	Ground
6	GND	Ground	20	TX	PA input port. Internally matched to 50Ω.
7	ANT	Antenna switch common port. Internally matched to 50Ω.	21	GND	Ground
8	GND	Ground	22	GND	Ground
9	GND	Ground	23	VDD2	4.0 V power supply
10	RX1	Receive arm of antenna switch. Internally matched to 50Ω.	24	VCC_TX1	4.0 V power supply
11	GND	Ground	25	VCC_TX2	4.0 V power supply
12	GND	Ground	26	VCC_TX3	4.0 V power supply
13	RX2	LNA and bypass switch input port	27	GND	Ground
14	GND	Ground	28	GND	Ground

Technical Description

The SKY65313-21 consists of a complete T/R chain with T/R switches contained in the module. A single-pole, double-throw (SPDT) switch selects between the receive and transmit paths. The module has a shut-down mode to minimize power consumption.

Three digital input pins (CTL1, CTL2, and CTL3) are used to select between transmit, receive, receive bypass, or shutdown mode.

Transmit Path

The transmit path contains a power amplifier (PA) optimized for saturated performance. The PA output is internally matched for optimum output power and efficiency into a 50Ω load impedance. The PA output is passed through an harmonic filter before being fed through the SPDT switch. The PA input provides a good return loss into a 50Ω source impedance.
Transmit output power is controlled by the VPC pin, which is normally set to 2.25 V DC voltage. The nominal DC input impedance into the VPC pin is $50 \mathrm{k} \Omega$.

Receive Path

The receive path contains an LNA with bypass switch. The LNA impedance matching networks are internal to the module and have been optimized for a low NF while maintaining good return losses into a 50Ω source and load impedance. The receive arm of the SPDT switch and the LNA input are connected to module pins to allow an external filter to be inserted into the receive path.

Operation Mode Control

The four SKY65313-21 operating modes are controlled by the three digital pins: CTL1, CTL2, and CTL3 (pins 2, 3, and 4, respectively). The control logic truth table is provided in Table 2.

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY65313-21 are provided in Table 3. Recommended operating conditions are specified in Table 4. Electrical specifications are provided in Tables 5, 6, and 7.

Typical performance characteristics of the SKY65313-21 are illustrated in Figures 3 through 22.

Table 2. SKY65313-21 Operating Modes Truth Table ${ }^{1}$

Operating Mode	Control Voltage			Internal States			
	$\begin{aligned} & \text { CTL1 } \\ & \text { (Pin 2) } \end{aligned}$	$\begin{gathered} \text { CTL2 } \\ \text { (Pin 3) } \end{gathered}$	$\begin{aligned} & \text { CTL3 } \\ & \text { (Pin 4) } \end{aligned}$	PA	LNA	LNA Bypass Switch	T/R Switch
Transmit	1	1	X	On	Off	Open	Transmit
Receive	0	1	0	Off	On	Open	RX1
Receive Bypass	0	1	1	Off	Off	Through	RX1
Shutdown ${ }^{2}$	X	0	X	Off	Off	Open	RX1

${ }^{1}$ See Recommended Operating Conditions Table for logic 0 and 1 characteristics. " X " $=$ don't care state, defined as a valid state of logic 1 or 0.
2 In the high state, CTL1, CTL2, and CTL3 have an input current of $33 \mu \mathrm{~A}$ due to an internal $100 \mathrm{k} \Omega$ pulldown. In the shutdown mode, for the lowest leakage current, the high state is not recommended for CTL1 and CTL3.

Table 3. SKY65313-21 Absolute Maximum Ratings ${ }^{1}$

Parameter	Symbol	Minimum	Maximum	Units
LNA supply voltage	VCC_RX	-0.3	+5.0	V
LNA supply current	Icc1		20	mA
PA supply voltage	VCC_TX1/2/3	-0.3	+5.0	V
PA supply current	Icc2		1.6	A
Digital supply voltage	Vod1	-0.5	+5.5	V
Digital supply voltage	Vod2	-0.5	+5.5	V
Digital control voltage (CTL1, CTL2, CTL3)	Vctl	-0.5	VDD1 + 0.3	V
Transmit output power control voltage (VPC)	VpC	-0.3	+5.0	V
Receive RF input power (RX2)	PIn_RX2		+5	dBm
Receive RF input power (ANT)	Pin_ant		+33	dBm
Transmit RF input power	PIn_TX		+15	dBm
Operating case temperature	Tc	-40	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$
Junction temperature	TJ		+150	${ }^{\circ} \mathrm{C}$
T/R port load VSWR in transmit mode	VSWR		10:1	-

${ }^{1}$ Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value.
Nominal thermal resistance, junction to case, is $18^{\circ} \mathrm{C} / \mathrm{W}$.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

Table 4. SKY65313-21 Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Units
Frequency range	f	860		960	MHz
LNA supply voltage	VCC_RX	3.0	3.3	3.6	V
Digital supply voltage ${ }^{1}$	Vdo1		VCC_RX		V
PA supply voltage	VCC_TX1/2/3	3.0	4.0	4.4	V
Digital supply voltage ${ }^{1}$	VdD2		VCC_TX1/2/3		V
Digital input voltage, logic 0 (CTL1, CTL2, CTL3)	VстL	0		0.7	V
Digital input voltage, logic 1 (CTL1, CTL2, CTL3)	Vctı	1.6		Vod1	V
Transmit output power control voltage (VPC)	Vpc	0	2.25	2.50	V
Receive RF input power (RX2)	PIn_RX2			-15	dBm
Transmit RF input power (TX)	PIn_tXIN		+10	+13	dBm
Transmit duty cycle				50	\%

${ }^{1}$ VDD1 and VDD2 are diode-coupled together with a typical turn-on voltage of 3.2 V .

Table 5. SKY65313-21 DC Electrical Specifications ${ }^{1}$
(VCC_RX = VDD1 = 3.0 V to 3.6 V, VCC_TX1/2/3 = VDD2 = 3.6 V to 4.4 V, Tc = -40 ${ }^{\circ}$ C to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$, No RF Input Power, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Quiescent current, receive mode ${ }^{2}$	lQ_RX		7.5	12.6	20.0	mA
Quiescent current, receive bypass mode ${ }^{2}$	IQ_BYP			46	90	$\mu \mathrm{A}$
VDD1 quiescent current, transmit mode	lQ_VDD1			25	30	mA
VCC_TX1/2/3/quiescent current, transmit mode	lQ_TXIN	$\begin{aligned} & \mathrm{Tc}=25^{\circ} \mathrm{C}, \\ & \mathrm{VCC} \text { _TX1/2/3 }=4 \mathrm{~V}, \\ & \text { VPC }=2.25 \mathrm{~V} \end{aligned}$		55	88	mA
VCC_TX1/2/3/ operating current, transmit mode	lop_TXIN	$\begin{aligned} & \mathrm{PIN}=+10 \mathrm{dBm}, @ 902 \text { to } \\ & 928 \mathrm{MHz}, \mathrm{Vpc}=2.25 \mathrm{~V} \end{aligned}$		655	826	mA
Vcc_rx quiescent current, shudown mode ${ }^{2,3}$	lo_SDVCC_RX			0.01		$\mu \mathrm{A}$
VCC_TX1/2/3 quiescent current, shutdown mode ${ }^{2,3}$	lQ_SDVCC_TX1, lo_sDVCC_TX2, lQ_SDVCC_TX3			0.03		$\mu \mathrm{A}$
Digital input current, logic ${ }^{3}$	IH			33		$\mu \mathrm{A}$
Digital input current, logic 0^{3}	IL			0		$\mu \mathrm{A}$

${ }^{1}$ Performance is guaranteed only under the conditions listed in this table.
${ }^{2}$ Total module power supply current.
${ }^{3}$ Not production tested.

Table 6. SKY65313-21 Electrical Specifications: Receive and Receive Bypass Mode ${ }^{1}$
 Impedance, CW Input, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typ	Max	Units	
Receive Mode: RX2 to Receive Output Path							
Small signal gain	GLna		15.6	16.6	18.3	dB	
Noise figure	NFLNA	$\mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{Vcc}$ _RX $=3.3 \mathrm{~V}$		1.4	1.8	dB	
Noise figure variation over temperature	NFtemp			± 0.25		dB	
1 dB input compression point	IP1dBLna	1 dB gain compression	-13	-11		dBm	
Third order input intercept point	IIP3Lna	PIN $=-30 \mathrm{dBm} /$ tone, 200 kHz spacing	-3.5	0		dBm	
Input return loss	IS11/Lna		8.0	10.7		dB	
Output return loss	IS22lına		10.0	13.6		dB	
Reverse isolation	IS12lına		20	22		dB	
Non-harmonic spurious ${ }^{2,3}$	PSPUR_LNA	VSWR 10:1, all phases			-50	dBm	
Transition time ${ }^{2}$	Tlna			0.5		$\mu \mathrm{s}$	
Receive Bypass Mode: RX2 to Receive Output Path							
Insertion loss	LBYP			3	4	dB	
1 dB input compression point	IP1dBByp	1 dB gain compression	+15	+16		dBm	
Third order input intercept point	IIP3BYp	PIN $=-30 \mathrm{dBm} /$ tone, 200 kHz spacing	+27	+30		dBm	
Input return loss	\|S11	${ }^{\text {PYp }}$		12	15		dB
Receive Bypass Mode: RX2 to Receive Output Path (continued)							
Output return loss	IS22lByP		12	22		dB	
Transition time ${ }^{2}$	Tbyp			0.5		$\mu \mathrm{s}$	
Receive and Receive Bypass Mode: ANT to RX1 Path							
Insertion loss	Lant			0.5	0.9	dB	
1 dB input compression point ${ }^{2}$	IP1dBant	1 dB gain compression		+35		dBm	
Third order input intercept point ${ }^{2}$	IIP3ant	$\mathrm{PIN}=-30 \mathrm{dBm} /$ tone, 200 kHz spacing		+50		dBm	
Input return loss	\|S11/ant		12	15		dB	
Output return loss	IS22\|ant		12	15		dB	
Transition time ${ }^{2}$	TANT			0.5		$\mu \mathrm{s}$	

${ }^{1}$ Performance is guaranteed only under the conditions listed in this table.
${ }^{2}$ Not production tested.
${ }^{3}$ Measurement performed with spectrum analyzer RBW $=100 \mathrm{kHz}$ for frequencies $<1 \mathrm{GHz}$ and $\mathrm{RBW}=1 \mathrm{MHz}$ for frequencies between 1 GHz and 10 GHz .

Table 7. SKY65313-21 Electrical Specifications: Transmit Mode ${ }^{1}$
 Impedance, CW Input, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units	
TXIN to ANT Path							
Saturated output power	Pout	$\begin{aligned} & \mathrm{PIN}=+10 \mathrm{dBm}, \\ & \mathrm{TC}=25^{\circ} \mathrm{C}, \\ & \mathrm{VCC} \text { TX1 } / 2 / 3=4.0 \mathrm{~V}, \\ & \mathrm{VPC}=2.25 \mathrm{~V} \end{aligned}$	+30.0	+30.5		dBm	
Output power variation over supply voltage		$\begin{aligned} & \mathrm{PIN}=+10 \mathrm{dBm}, \\ & \mathrm{~V} \mathrm{PC}=2.25 \mathrm{~V} \end{aligned}$		± 0.8		dB	
Output power variation over temperature		$\begin{aligned} & \mathrm{PIN}=+10 \mathrm{dBm}, \\ & \mathrm{VPC}=2.25 \mathrm{~V} \end{aligned}$		± 0.15		dB	
Output power control	Рctl	$\begin{aligned} & \mathrm{PIN}=+10 \mathrm{dBm}, \\ & \mathrm{VPC}=0 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	40	50		dB	
Power-added efficiency	PAE	$\mathrm{PIN}=+10 \mathrm{dBm}$		41		\%	
$2^{\text {nd }}$ harmonic	2 fo	$\mathrm{PIN}=+10 \mathrm{dBm}$		-36	-20	dBc	
$3{ }^{\text {rd }}$ harmonic	3fo	$\mathrm{PIN}=+10 \mathrm{dBm}$		-62	-58	dBc	
$4^{\text {th }}$ harmonic	4fo	$\mathrm{PIN}=+10 \mathrm{dBm}$		-76	-66	dBc	
$5^{\text {th }}$ harmonic	5 fo	$\mathrm{PIN}=+10 \mathrm{dBm}$		-78	-70	dBc	
$6^{\text {th }}-10^{\text {th }}$ harmonics ${ }^{3}$	6fo-10fo	$\mathrm{PIN}=+10 \mathrm{dBm}$			-70	dBc	
Input return loss	\|S11	Tx	$\begin{aligned} & \mathrm{PIN}=+10 \mathrm{dBm}, \\ & \mathrm{TC}=25^{\circ} \mathrm{C}, \\ & \mathrm{VCC} \text { TX1 } / 2 / 3=4.0 \mathrm{~V}, \\ & \mathrm{VPC}=2.25 \mathrm{~V} \end{aligned}$	10	16		dB
Output impedance ${ }^{4}$	Zout_TX	$\mathrm{PIN}=+10 \mathrm{dBm}$		39-j46		Ω	
Non-harmonic spurious ${ }^{4,5}$	PsPUR_TX	VSWR 10:1, all phases			-50	dBm	
Transition time ${ }^{4}$	Ttx			0.5		$\mu \mathrm{s}$	
ANT to RX1 Path							
Isolation	IS21lant		18	23		dB	

${ }^{1}$ Performance is guaranteed only under the conditions listed in this table.
2 Output power control is the difference between the output power at VPC $=2.25 \mathrm{~V}$ and $\mathrm{VPC}=0 \mathrm{~V}$.
${ }^{3}$ Only the $2^{\text {nd }}$ to $5^{\text {th }}$ harmonics have been production tested. The $6^{6^{\text {th }}}$ to $10^{\text {th }}$ harmonics are characterized only.
${ }^{4}$ Not production tested.
${ }^{5}$ Measurement performed with spectrum analyzer RBW $=100 \mathrm{kHz}$ for frequencies $<1 \mathrm{GHz}$ and RBW $=1 \mathrm{MHz}$ for frequencies between 1 GHz and 10 GHz .

Typical Performance Characteristics

Figure 3. PA Saturated Output Power vs Frequency Over Temperature (VCC_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC_RX = 3.3 V, Pin = +10 dBm, VPC = $\mathbf{2 . 2 5} \mathrm{V}$)

Figure 5. PA Gain vs Output Power Over Temperature (VCC_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC_RX = 3.3 V, $\mathbf{f}=\mathbf{9 1 5} \mathbf{~ M H z}, \mathrm{VPC}=\mathbf{2 . 2 5} \mathrm{V})$

Figure 4. PA Saturated Output Power vs Frequency Over VCC_TX/1/2/3 (VDD1 = VCC_RX = 3.3 V, Tc = $25{ }^{\circ} \mathrm{C}$, PIN $=+\mathbf{1 0} \mathbf{d B m}, \mathrm{VPC}=\mathbf{2 . 2 5} \mathbf{~ V})$

Figure 6. PA Output Power vs VPC Over Temperature (VCC_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC_RX $=3.3 \mathrm{~V}$, $\mathrm{f}=\mathbf{9 1 5} \mathbf{~ M H z}, \mathrm{PIN}=\boldsymbol{+ 1 0} \mathbf{d B m})$

Figure 7. PA Operating Current vs Output Power Over Temperature (VCC_TX/1/2/3 = VDD2 = 4.0 V , VDD1 $=$ VCC_RX $=\mathbf{3 . 3} \mathbf{V}, \mathbf{f}=\mathbf{9 1 5} \mathbf{~ M H z}, V P C=2.25 V)$

Figure 9. PA ${ }^{\text {nd }}$ Harmonic vs Frequency Over VCC_TX1/2/3 (VDD1 = VCC_RX = $3.3 \mathrm{~V}, \mathrm{TC}=25^{\circ} \mathrm{C}, \mathrm{PIN}=+10 \mathrm{dBm}$

$$
V P C=2.25 \mathrm{~V})
$$

Figure 11. PA $4^{\text {th }}$ Harmonic vs Frequency Over VCC_TX1/2/3 (VDD1 $=$ VCC_RX $=3.3 \mathrm{~V}, \mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{PIN}=+10 \mathrm{dBm}$

$$
V P C=2.25 \mathrm{~V})
$$

Figure 8. PA Operating Current vs Output Power Over VCC_TX/1/2/3 (VDD1 = VCC_RX = 3.3 V, Tc = $25{ }^{\circ} \mathrm{C}$, $\mathbf{f}=\mathbf{9 1 5} \mathbf{~ M H z}, \mathrm{VPC}=\mathbf{2 . 2 5} \mathbf{V}$)

Figure 10. PA $3^{\text {rd }}$ Harmonic vs Frequency Over VCC_TX1/2/3 (VDD1 = VCC_RX = $\mathbf{3 . 3} \mathbf{V}, \mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{PIN}=+10 \mathrm{dBm}$ VPC = $\mathbf{2 . 2 5}$ V)

Figure 12. PA $5^{\text {th }}$ Harmonic vs Frequency Over VCC_TX1/2/3 (VDD1 = VCC_RX = 3.3 V, TC $=25^{\circ} \mathrm{C}, \mathrm{PIN}=+10 \mathrm{dBm}$ VPC $=\mathbf{2 . 2 5} \mathrm{V}$)

Figure 13. LNA Gain vs Frequency Over Temperature (VCC_TX/1/2/3 = VDD2 = 4.0 V, VDD1 = VCC_RX = 3.3 V)

Figure 15. LNA IIP3 vs Frequency Over Temperature (VCC_TX/1/2/3 = VDD2 $=\mathbf{4 . 0} \mathrm{V}, \mathrm{Tc}=25{ }^{\circ} \mathrm{C}$)

Figure 17. LNA Noise Figure vs Frequency Over Temperature (VCC_TX/1/2/3 = VDD2 = 4.0 V, VCC_RX = VDD1 = 3.3 V)

Figure 14. LNA Gain vs Frequency Over VCC_RX (VCC_TX/1/2/3 = VDD2 $=\mathbf{4 . 0} \mathrm{V}, \mathrm{Tc}=25{ }^{\circ} \mathrm{C}$)

Figure 16. LNA IIP3 vs Frequency Over VCC_RX (VCC_TX/1/2/3 = VDD2 $=\mathbf{4 . 0} \mathrm{V}, \mathrm{Tc}=25{ }^{\circ} \mathrm{C}$)

Figure 18. LNA Noise Figure vs Frequency Over VCC_RX (VCC_TX/1/2/3 = VDD2 = 4.0 V, Tc = $25{ }^{\circ} \mathrm{C}$)

Figure 19. Antenna Switch Insertion Loss vs Frequency Over Temperature (VCC_TX/1/2/3 = VDD2 = 4.0 V , VDD1 $=$ VCC_RX = 3.3 V)

Figure 21. Bypass Switch Insertion Loss vs Frequency Over Temperature (VCC_TX/1/2/3 = VDD2 = $\mathbf{4 . 0} \mathrm{V}$, Tc $=25{ }^{\circ} \mathrm{C}$)

Figure 20. Antenna Switch Insertion Loss vs Frequency Over VCC_RX (VCC_TX/1/2/3 = VDD2 = $\mathbf{4 . 0} \mathrm{V}, \mathrm{Tc}=25{ }^{\circ} \mathrm{C}$)

Figure 22. Bypass Switch Insertion Loss vs Frequency Over VCC_RX (VCC_TX/1/2/3 = VDD2 = $\mathbf{4 . 0} \mathbf{V}$, $\mathrm{Tc}=25{ }^{\circ} \mathrm{C}$)

Evaluation Board Description

The SKY65313-21 Evaluation Board is used to test the performance of the SKY65313-21 T/R FEM. A typical application schematic diagram is provided in Figure 23.

An Evaluation Board schematic diagram is provided in Figure 24. An assembly drawing for the Evaluation Board is shown in Figure 25.

Figure 23. SKY65313-21 Typical Application Schematic

Figure 24. SKY65313-21 Evaluation Board Schematic

Figure 25. SKY65313-21 Evaluation Board Assembly Diagram

Package Dimensions

A typical part marking is shown in Figure 26. The PCB layout footprint for the SKY65313-21 is provided in Figure 27. Package dimensions are shown in Figure 28, and tape and reel dimensions are provided in Figure 29.

Package and Handling Information

Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.
The SKY65313-21 is rated to Moisture Sensitivity Level 3 (MSL3) at $260^{\circ} \mathrm{C}$. It can be used for lead or lead-free soldering. For additional information, refer to Skyworks Application Note, PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages, document number 101752.
Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

Figure 26. Typical Part Marking

Figure 27. SKY65313-21 PCB Layout Footprint

Figure 28. SKY65313-21 Package Dimensions

Detail B
Notes:

1. Carrier tape: black conductive polycarbonate or polystyrene.
2. Cover tape material: transparent conductive PSA.
3. Cover tape size: 9.3 mm width.
4. All dimensions are in millimeters.
5. ESD-surface resistivity is $\leq 1 \times 10^{10} 0 \mathrm{hms} /$ square per EIA, JEDEC TNR Specification.

Detail A
Figure 29. SKY65313-21 Tape and Reel Dimensions

Ordering Information

Model Name	Manufacturing Part Number	Evaluation Board Part Number
SKY65313-21: T/R Front-End Module	SKY65313-21	SKY65313-21-EVB

Copyright © 2012, 2016-2017 Skyworks Solutions, Inc. All Rights Reserved.
Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Sub-GHz Development Tools category:
Click to view products by Skyworks manufacturer:

Other Similar products are found below :
EVAL-ADF7021DBJZ EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z MICRF219A-433 EV MICRF220-433 EV AD6679-500EBZ EVAL-ADF7901EBZ EVAL-ADF790XEBZ 110976-HMC453QS16G STEVAL-IKR002V7D MAX2602EVKIT+ MAX1472EVKIT-315 MAX1479EVKIT-315 STEVAL-IKR002V3D MAX7042EVKIT-315+ MAX2902EVKIT\# MAX9947EVKIT+ MAX1470EVKIT-315 SKY66188-11-EK1 SKY66013-11-EVB EVAL-ADF7023DB5Z DRF1200/CLASS-E 109610971098 MDEV-900-PRO DVK-SFUS-1GEVK DVK-SFUS-API-1-GEVK US-SIGFOX-GEVB STEVAL-IKR002V2D 107755-HMC454ST89 DM182017-2 110961-HMC453ST89 DM182017-1 3179 DC689A DC1513B-AB $3229 \underline{3230} 3231 \underline{3232}$ DC1250A-AA DC1513B-AC DC1513B-AD DC1513B-AA TEL0075 131903-HMC921LP4E EU-SIGFOX-GEVB 856512-EVB 856512-EVB-1

