

## DATA SHEET

# SKY67180-306LF: 1.5 to 3.8 GHz Two-Stage, High-Gain Low-Noise Amplifier

## **Applications**

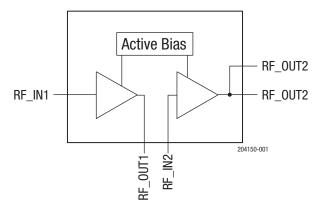
- LTE, GSM, WCDMA, HSDPA macro-base and micro-base stations
- · S and C band ultra-low-noise receivers
- Cellular repeaters, small-cell, macro-cell, DAS, and RRH/RRUs
- High-temperature applications to +105 °C

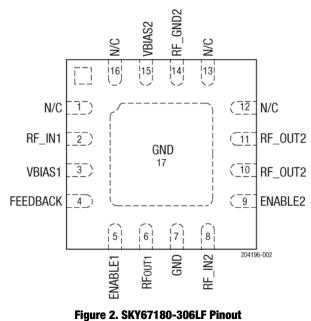
## **Features**

- Ultra-low reference design NF: 0.8 dB @ 3.5 GHz
- High gain: 31 dB (typical) @ 3.5 GHz
- Low quiescent current: 125 mA
- Stage 1 and 2 adjustable current
- Small QFN (16-pin, 4 x 4 mm) Pb-free package (MSL1, 260 °C per JEDEC J-STD-020)



Skyworks Green<sup>™</sup> products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*<sup>™</sup>, document number SQ04–0074.





Figure 1. SKY67180-306LF Block Diagram

## **Description**

The SKY67180-306LF is a two-stage, low-noise amplifier (LNA) with active bias and high-linearity performance. The front end of the device provides an ultra-low noise figure (NF) while the output stage provides high gain, linearity, and efficiency.

With excellent thermal performance, the SKY67180-306LF is rated for operation up to +105 °C.

The SKY67180-306LF is provided in a 4 x 4 mm, 16-pin Quad Flat No-Lead (QFN) package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.



(Top View)

| Table 1. | SKY67180 | )-306LF | Signal | Descriptions |
|----------|----------|---------|--------|--------------|
|          |          |         |        |              |

| Pin | Name          | Description                                                                                               | Pin | Name    | Description                                                   |
|-----|---------------|-----------------------------------------------------------------------------------------------------------|-----|---------|---------------------------------------------------------------|
| 1   | N/C           | No connection. May be grounded with no change in performance.                                             | 10  | RF_0UT2 | RF output of second stage amplifier                           |
| 2   | RF_IN1        | RF input to first stage LNA                                                                               | 11  | RF_0UT2 | RF output of second stage amplifier                           |
| 3   | RF_GND/VBIAS1 | AC ground for first stage bias circuit and bias voltage input that sets the first stage bias current.     | 12  | N/C     | No connection. May be grounded with no change in performance. |
| 4   | FEEDBACK      | Feedback pin. Leave open when not used. This feedback option is typically not used since it reduces gain. | 13  | N/C     | No connection. May be grounded with no change in performance. |
| 5   | ENABLE1       | First stage LNA Enable pin.                                                                               | 14  | RF_GND2 | AC ground for second stage bias circuit                       |
| 6   | RFout1        | RF output of first stage LNA                                                                              | 15  | VBIAS2  | Bias voltage input that sets the second stage bias current    |
| 7   | GND           | Ground                                                                                                    | 16  | N/C     | No connection. May be grounded with no change in performance. |
| 8   | RF_IN2        | RF input to second stage amplifier                                                                        | 17  | GND     | Center ground                                                 |
| 9   | ENABLE2       | Second stage LNA Enable pin.                                                                              |     |         |                                                               |

## **Electrical and Mechanical Specifications**

The absolute maximum ratings of the SKY67180-306LF are provided in Table 2.

Electrical specifications are provided in Tables 3 and 4. Typical performance characteristics are shown in Figures 3 through 10.

## Table 2. SKY67180-306LF Absolute Maximum Ratings<sup>1</sup>

| Parameter                                                               | Symbol | Minimum | Maximum     | Units        |
|-------------------------------------------------------------------------|--------|---------|-------------|--------------|
| Supply voltage                                                          | Vdd    |         | 6.0         | V            |
| RF input power                                                          | Pin    |         | +20         | dBm          |
| Operating temperature                                                   | Тор    | -40     | +105        | °C           |
| Storage temperature                                                     | Тѕтс   | -65     | +125        | °C           |
| Junction temperature                                                    | TJ     |         | +150        | °C           |
| Thermal resistance:<br>Stage 1<br>Stage 2                               | ουο    |         | 50<br>65    | °C/W<br>°C/W |
| Electrostatic discharge:                                                | ESD    |         |             |              |
| Charged Device Model (CDM), Class 3<br>Human Body Model (HBM), Class 1A |        |         | 1000<br>250 | V<br>V       |

1 Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

**ESD HANDLING**: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

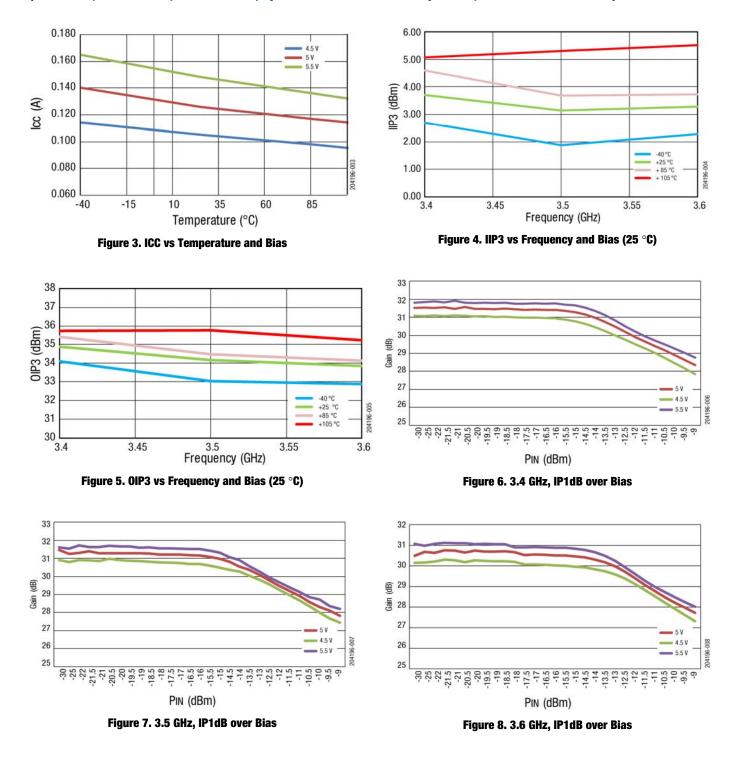
| Parameter                          | Symbol  | Test Condition                                                                                | Min      | Тур | Мах        | Units  |
|------------------------------------|---------|-----------------------------------------------------------------------------------------------|----------|-----|------------|--------|
| Noise figure <sup>2</sup>          | NF      | @ 3500 MHz                                                                                    |          | 0.8 | 1.1        | dB     |
| Small signal gain                  | S21     | @ 3500 MHz                                                                                    | 28       | 31  |            | dB     |
| Input return loss                  | S11     | @ 3500 MHz                                                                                    |          | 9.5 |            | dB     |
| Output return loss                 | IS221   | @ 3500 MHz                                                                                    |          | 15  |            | dB     |
| Reverse isolation                  | S12     | @ 3500 MHz                                                                                    |          | 49  |            | dB     |
| Input third order intercept point  | IIP3    | @ 3500 MHz, ∆f = 1 MHz, PiN = -30 dBm/tone                                                    | -1       | +3  |            | dBm    |
| Output third order intercept point | OIP3    | @ 3500 MHz, $\Delta f = 1$ MHz, P <sub>IN</sub> = -30 dBm/tone                                | +30      | +34 |            | dBm    |
| Output 1 dB compression point      | OP1dB   | @ 3500 MHz                                                                                    | 13       | 17  |            | dBm    |
| Supply voltage                     | Vdd     |                                                                                               |          | 5   |            | V      |
| Enable voltage:                    | VENABLE |                                                                                               |          |     |            |        |
| Gain mode<br>Power-down mode       |         |                                                                                               | 0<br>1.5 |     | 0.2<br>5.5 | V<br>V |
| Quiescent supply current           | ldd     | Set with external resistor<br>Stage 1 Rbias = 18 k $\Omega$<br>Stage 2 Rbias = 7.5 k $\Omega$ | 100      | 125 |            | mA     |

#### Table 3. SKY67180-306LF Electrical Specifications<sup>1</sup>

(VDD = +5 V, TOP = +25 °C, PN = -30 dBm, Optimized for 3.4 to 3.6 GHz Operation, Unless Otherwise Noted)

<sup>1</sup> Performance is guaranteed only under the conditions listed in this table.

<sup>2</sup> Noise figure has been de-embedded as 0.1 dB @ 3.5 GHz for connector and board loss.


## Table 4. SKY67180-306LF Electrical Specifications<sup>1,2</sup> ( $V_{DD} = +5 V$ , $T_{OP} = +25 °C$ , $P_{IN} = -30 dBm$ , Optimized for 2.6 GHz Operation, Unless Otherwise Noted)

| Parameter                          | Symbol | Test Condition                                    | Min | Тур    | Max | Units |
|------------------------------------|--------|---------------------------------------------------|-----|--------|-----|-------|
| Noise figure <sup>3</sup>          | NF     | @ 2.6 GHz                                         |     | 0.7    |     | dB    |
| Small signal gain                  | S21    | @ 2.6 GHz                                         |     | 34.17  |     | dB    |
| Input return loss                  | IS111  | @ 2.6 GHz                                         |     | 17.3   |     | dB    |
| Output return loss                 | IS221  | @ 2.6 GHz                                         |     | 14.6   |     | dB    |
| Reverse isolation                  | IS12I  | @ 2.6 GHz                                         |     | 50.04  |     | dB    |
| Input third order intercept point  | IIP3   | @ 2.6 GHz, $\Delta f = 1$ MHz, PiN = -30 dBm/tone |     | +4.22  |     | dBm   |
| Output third order intercept point | OIP3   | @ 2.6 GHz, $\Delta f = 1$ MHz, PiN = -30 dBm/tone |     | +38.76 |     | dBm   |

<sup>1</sup> Performance is guaranteed by characterization.

<sup>2</sup> Tested using the Evaluation Board BOM listed in Table 6.

 $^3$  Noise figure has been de-embedded as 0.1 dB @ 2.6 GHz for connector and board loss.



## Typical Performance Characteristics

(VDD = +5 V, TOP = +25 °C, PIN = -30 dBm, Optimized for 3.4 to 3.6 GHz Operation, Unless Otherwise Noted)

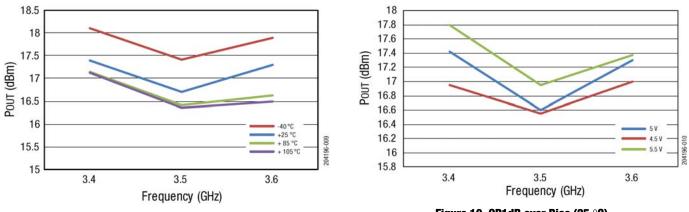
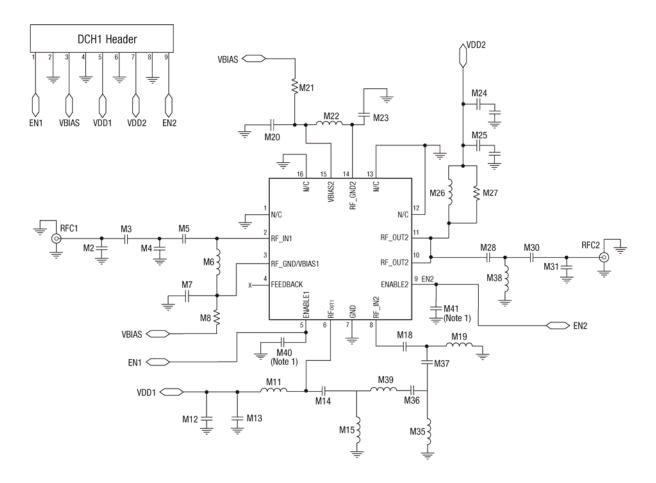



Figure 9. OP1dB over Temperature (5 V)




## **Evaluation Board Description**

The SKY67180-306LF Evaluation Board is used to test the performance of the SKY67180-306LF two-stage LNA. An Evaluation Board schematic diagram is provided in Figure 11 and represents device performance in a matched environment.

Actual values used in application may vary particular to layout parasitics. Table 5 provides the Evaluation Board Bill of Materials for 3.4 to 3.6 GHz operation. Table 6 provides the Evaluation Board Bill of Materials for 2.6 GHz operation.

The Evaluation Board assembly drawing is shown in Figure 12.



Note 1:

M40 and M41 are general noise immunity bypass capacitors and are optional.

These capacitors are not recommended for applications with series resistance on control lines.

204918-010a

## Figure 11. SKY67180-306LF Evaluation Board Schematic

| Component | Description | Value    | Size | Manufacturer | Mfr Part Number   |
|-----------|-------------|----------|------|--------------|-------------------|
| M2        | Capacitor   | 0.3 pF   | 0402 | Murata       | GJM155C1HR30WB01  |
| M3        | Capacitor   | 2.7 pF   | 0402 | Murata       | GJM155C1H2R7BB01  |
| M4        | Capacitor   | 0.5 pF   | 0402 | Murata       | GJM155C1HR50WB01  |
| M5        | Capacitor   | 8.2 pF   | 0402 | Murata       | GJM155C1H8R2CB01  |
| M6        | Inductor    | 18 nH    | 0402 | Murata       | LQW15AN18NH00     |
| M7        | DNP         |          |      |              |                   |
| M8        | Resistor    | 18 kΩ    | 0402 | Panasonic    | ERJ-2RFK180NH     |
| M11       | Inductor    | 3.3 nH   | 0402 | Murata       | LQG15HS3N3S02     |
| M12       | Capacitor   | 1000 pF  | 0402 | Murata       | GRM155R71H102KA01 |
| M13       | Capacitor   | 10000 pF | 0402 | Murata       | GRM155R71H103KA88 |
| M14       | Capacitor   | 1.5 pF   | 0402 | Murata       | GJM1555C1H1R5BB01 |
| M15       | Inductor    | 1.3 nH   | 0402 | TDK          | MLG1005S1N3BT00   |
| M18       | Capacitor   | 0.6 pF   | 0402 | Murata       | GJM1555C1HR60WB01 |
| M19       | Inductor    | 1.8 nH   | 0402 | TDK          | MLK1005S1N8ST000  |
| M20       | Capacitor   | 5.6 pF   | 0402 | Murata       | GRM36C0G5R6C50    |
| M21       | Resistor    | 7.5 kΩ   | 0402 | Panasonic    | ERJ-2RFK750NH     |
| M22       | Inductor    | 15 nH    | 0402 | Murata       | LQW15AN15NH00     |
| M23       | Capacitor   | 1000 pF  | 0402 | Murata       | GRM155R71H102KA01 |
| M24       | Capacitor   | 1 μF     | 0402 | Murata       | GRM155R61A105KE15 |
| M25       | Capacitor   | 10 pF    | 0402 | Murata       | GRM36C0G1R5C50    |
| M26       | Inductor    | 9.1 nH   | 0402 | Murata       | LQG15HN9N1J02D    |
| M27       | Resistor    | 560 Ω    | 0402 | Panasonic    |                   |
| M28       | Capacitor   | 22 pF    | 0402 | Murata       | GJM1555C1H220GB01 |
| M30       | Inductor    | 1.0 nH   | 0402 | ТДК          | MLK1005S1N0ST000  |
| M31       | Capacitor   | 1 pF     | 0402 | Murata       | GJM1555C1H1R0BB01 |
| M35       | DNP         |          |      |              |                   |
| M36       | Resistor    | 0 Ω      | 0402 | Panasonic    | ERJ-2GE0R00X      |
| M37       | Capacitor   | 3.9 pF   | 0402 | Murata       | GJM1555C1H3R9BB01 |
| M38       | DNP         | 0.2 pF   | 0402 | Murata       | GJM155C1H0R2BB01  |
| M39       | Capacitor   | 22 pF    | 0402 | Murata       | GJM1555C1H220GB01 |
| M40       | DNP         |          |      |              |                   |
| M41       | Capacitor   | 1000 pF  | 0402 | Murata       | GRM155R71H102KA01 |

Table 5. SKY67180-306LF Evaluation Board Bill of Materials (BOM) for 3.4 to 3.6 GHz Operation

| Component | Description | Value    | Size | Manufacturer | Mfr Part Number   |
|-----------|-------------|----------|------|--------------|-------------------|
| M2        | Capacitor   | 1 pF     | 0402 | Murata       | GJM1555C1H1R0BB01 |
| M3        | Resistor    | 0 Ω      | 0402 | Panasonic    | ERJ-2GEOROOX      |
| M4        | DNP         |          |      |              |                   |
| M5        | Capacitor   | 8.2 pF   | 0402 | Murata       | GJM155C1H8R2CB01  |
| M6        | Inductor    | 18 nH    | 0402 | Murata       | LQW15AN18NH00     |
| M7        | DNP         |          |      |              |                   |
| M8        | Resistor    | 11 kΩ    | 0402 | Panasonic    | ERJ-2RFK180NH     |
| M11       | Inductor    | 3.3 nH   | 0402 | Murata       | LQG15HS3N3S02     |
| M12       | Capacitor   | 1000 pF  | 0402 | Murata       | GRM155R71H102KA01 |
| M13       | Capacitor   | 10000 pF | 0402 | Murata       | GRM155R71H103KA88 |
| M14       | Capacitor   | 1.5 pF   | 0402 | Murata       | GJM1555C1H1R5BB01 |
| M15       | DNP         |          |      |              |                   |
| M18       | Capacitor   | 0.6 pF   | 0402 | Murata       | GJM1555C1HR60WB01 |
| M19       | Inductor    | 2.4 nH   | 0402 | Murata       | LQP               |
| M20       | Capacitor   | 5.6 pF   | 0402 | Murata       | GRM36C0G5R6C50    |
| M21       | Resistor    | 11 kΩ    | 0402 | Panasonic    |                   |
| M22       | Inductor    | 15 nH    | 0402 | Murata       | LQW15AN15NH00     |
| M23       | Capacitor   | 1000 pF  | 0402 | Murata       | GRM155R71H102KA01 |
| M24       | Capacitor   | 1 µF     | 0402 | Murata       | GRM155R61A105KE15 |
| M25       | Capacitor   | 10 pF    | 0402 | Murata       | GRM36C0G1R5C50    |
| M26       | Inductor    | 9.1 nH   | 0402 | Murata       | LQG15HN9N1J02D    |
| M27       | DNP         |          |      |              |                   |
| M28       | Capacitor   | 5.1 pF   | 0402 | Murata       | GJM               |
| M30       | Resistor    | 0 Ω      | 0402 | Panasonic    | ERJ-2GEOROOX      |
| M31       | DNP         |          |      |              |                   |
| M35       | DNP         |          |      |              |                   |
| M36       | Resistor    | 0 Ω      | 0402 | Panasonic    | ERJ-2GE0R00X      |
| M37       | Capacitor   | 3.9 pF   | 0402 | Murata       | GJM1555C1H3R9BB01 |
| M38       | Inductor    | 3 nH     | 0402 | Murata       | LQP               |
| M39       | Capacitor   | 22 pF    | 0402 | Murata       | GJM1555C1H220GB01 |
| M40       | DNP         |          |      |              |                   |
| M41       | Capacitor   | 1000 pF  | 0402 | Murata       | GRM155R71H102KA01 |

## Table 6. SKY67180-306LF Evaluation Board Bill of Materials (BOM) for 2.6 GHz Operation

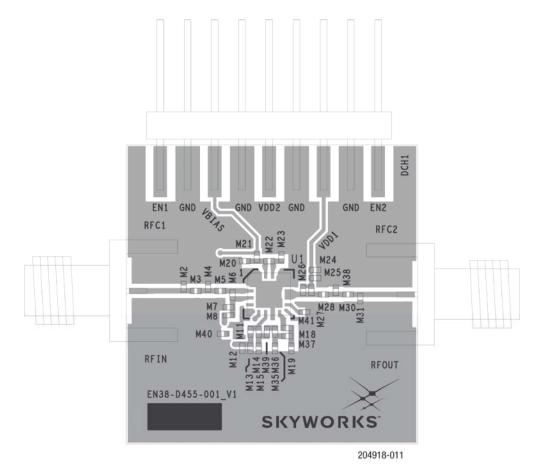



Figure 12. SKY67180-306LF Evaluation Board Assembly Diagram

## **Package Dimensions**

The PCB layout footprint for the SKY67180-306LF is shown in Figure 13. Typical part markings are noted in Figure 14. Package dimensions are shown in Figure 15, and tape and reel dimensions are provided in Figure 16.

## **Package and Handling Information**

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY67180-306LF is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Solder Reflow Information*, document number 200164.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

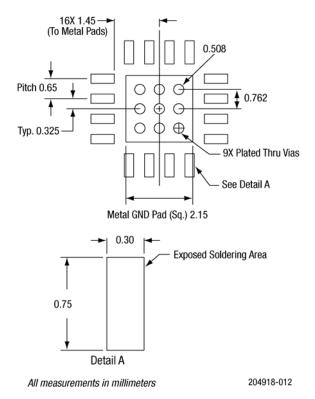
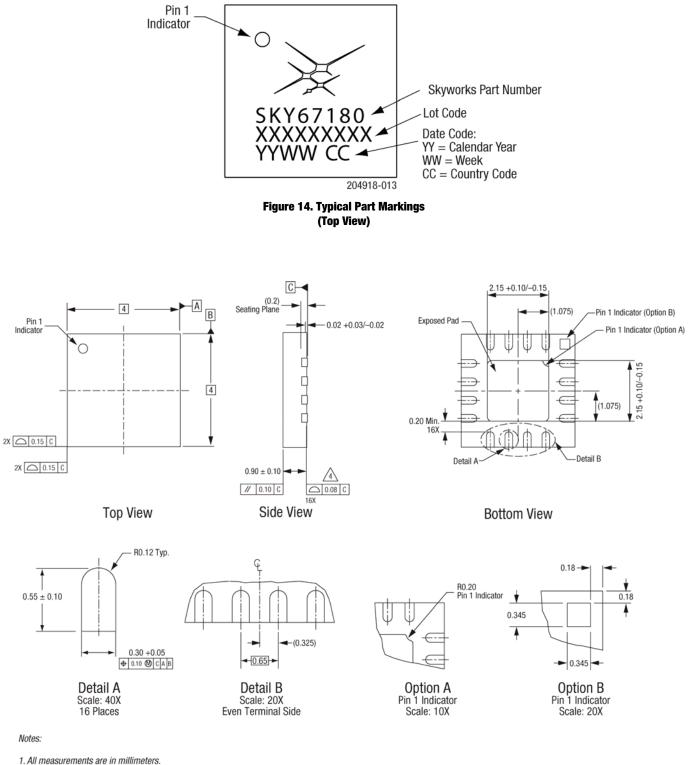
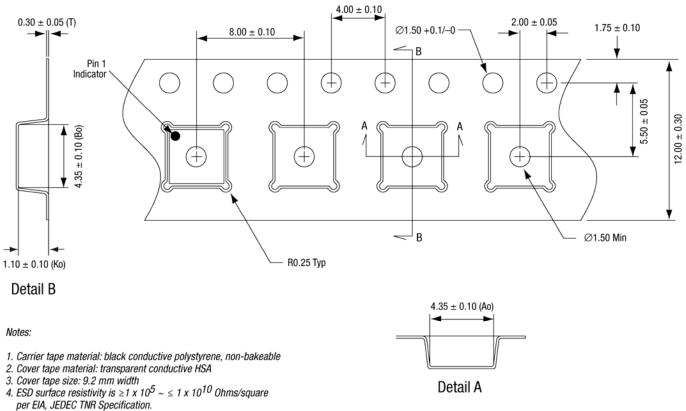




Figure 13. SKY67180-306LF PCB Layout Footprint




2. Dimensions and tolerances according to ASME Y14.5M-1994.

3. Coplanarity applies to the exposed heat sink slug as well as the terminals.

4. Package may have option A or option B pin 1 indicator.



204196-014



5. All measurements are in millimeters

#### Figure 16. SKY67180-306LF Tape and Reel Dimensions

204196-015

## **Ordering Information**

| Part Number    | Product Description                                     | Evaluation Board Part Number                                                      |
|----------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|
| SKY67180-306LF | 1.5 to 3.8 GHz Two-Stage, High-Gain Low-Noise Amplifier | SKY67180-306EK1 (3.4 to 3.6 GHz operation)<br>SKY67180-306EK2 (2.6 GHz operation) |

Copyright © 2018 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Skyworks manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1