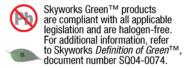


DATA SHEET


SKY77912-61 Tx-Rx Front-End Module for Quad-Band GSM / GPRS / EDGE w/ 10 Linear TRx Switch Ports, Dual-Band TD-SCDMA, and TDD LTE Band 39

Applications

- Cellular handsets encompassing Quad-Band GSM/EDGE, Dual-Band TD-SCDMA, and TDD LTE
 - Class 4 GSM850/900
 - Class 1 DCS1800/PCS1900
 - Class 12 GPRS multi-slot operation
 - Linear EDGE operation
 - TD-SCDMA Bands 34/39
 - TDD LTE Band 39

Features

- MIPI[®] RFFE control with dual-standard support
- User-selectable register mappings
- Linear or VRAMP-based GMSK power control
- ullet RF ports internally matched to 50 Ω load
- High Efficiency (inclusive of coupler)
 - 40% GSM850 31% DCS1800
 - 40% GSM900 33% PCS1900
- Tx harmonics below -40 dBm
- · Supports APT, buck DC-DC supply
- 10 low insertion loss/high linearity TRx switch ports
- RF input switching to 3G/4G path
- Integrated broadband directional coupler
- Built-in IEC-compliant antenna ESD protection
- High impedance control inputs: 20 µA, maximum
- Current limiting and over-voltage protection for ruggedness and extended battery life
- Power control circuitry built-in for improved TRP variation
- Small, low profile package
 - 5.5 mm x 5.3 mm x 0.71 mm
 - 38-pad configuration
- Supports Uplink Carrier Aggregation in Band 39 (35 MHz)

Description

SKY77912-61 is a Tx-Rx Front-End Module (FEM) which offers the complete transmit VCO-to-Antenna and Antenna-to-receive SAW filter solution for advanced cellular handsets comprising quad-band GSM, GPRS, EDGE multi-slot operation, and TD-SCDMA and TDD LTE transmission. The FEM fully enables broadband 3G/4G RF switch-through, outward switching of the Power Amplifier (PA) RF inputs, 10 transmit / receive (TRx) antenna switch ports, and an integrated directional coupler.

A new multi-standard CMOS controller provides PA band/mode selection and bias control, including the Mobile Industry Processor Interface (MIPI®) RFFE logic, and switch decoder circuitry. The controller supports user-optional control of linear RF or analog VRAMP of the GMSK envelope. A distinct MIPI register mapping included in this Data Sheet provides for each of these control paradigms, including associated approaches to PA and switch control.

The Heterojunction Bipolar Transistor (HBT) PA blocks are fabricated in Gallium Arsenide (GaAs). The low band (LB) PA transmits in the GSM850/900 bands. The high band (HB) PA supports DCS, PCS, TD-SCDMA bands 34/39, and TDD LTE band 39. The HBT, switch, and controller die, and passive components mount onto a multi-layer laminate substrate and the entire assembly encapsulated with plastic over-mold.

Built into the SKY77912-61 is a complete features set for state-of-theart performance and minimal phone board complexity, including PA over-voltage and over-current protection, 50 ohms matching and zero DC offset on all RF pins, TRx high linearity/low loss switching and high off-state isolation, integrated directional coupler, IEC ruggedness at antenna output, LB and HB input switching for alternate RF routing 3G/4G Tx paths, power supply pads shared between LB and HB, and ultra-low leakage currents for long standby times.

Selecting the linear-GMSK operation standard disables VRAMP input so all PA biasing depends only on MIPI mode selection. The transmitted envelope is a linear function of RF input.

Selecting VRAMP-enabled operation, the PA controller provides VRAMP control of the GMSK envelope and reduces sensitivity to input drive, temperature, power supply, and process variations. Skyworks' Finger-Based Integrated Power Amplifier Control (FB-iPAC) minimizes output power variation into mismatch. In EDGE and TD-SCDMA / TDD LTE linear modes, VRAMP voltage and MIPI-based bias settings jointly optimize PA linearity and efficiency.

1

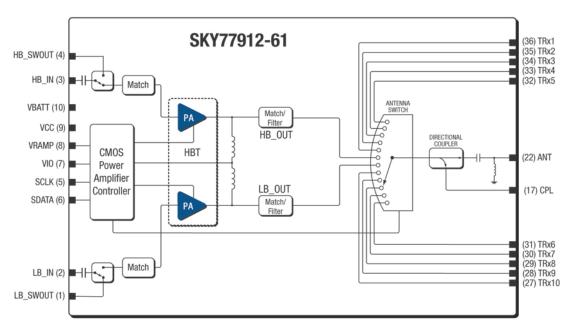


Figure 1. SKY77912-61 Functional Block Diagram

Electrical Specifications

The following tables list the electrical specifications of the SKY77912-61 Front-End Module. Table 1 lists the absolute maximum ratings and Table 2 lists the recommended operating conditions. Table 5 through Table 14 provide the electrical specifications of the SKY77912-61 for GMSK, EDGE, TD-SCDMA,

and TDD LTE transmission, and TRx port modes including control logic descriptions for the various modes.

203954 001

The SKY77912-61 is a static-sensitive electronic device and should not be stored or operated near strong electrostatic fields. Detailed information on device dimensions, pad descriptions, packaging and handling can be found in later sections of this data sheet.

Table 1. Absolute Maximum Ratings¹

	Parameter	Symbol	Min	Nominal	Max	Unit
Input Power		Pin	_	_	15	dBm
Supply Voltage ≤ 1 µs (r	measured to GND)	VBATT	1.2 ²	_	6.0	V
		Vcc	0.5		6.0 ³	
DC Continuous During B	Burst ⁴	IBATT	_	_	2.5	Α
GMSK Burst Duty Cycle		Dв	_	_	50	%
Voltage Standing Wave	/oltage Standing Wave Ratio		_	_	20:1	V
Power Control Voltage		VRAMP	-0.3	_	3.0	V
MIPI Supply Voltage		VIO	_	_	2.0	V
MIPI Data and Clock Vol	tage	VMIPI	_	_	2.0	V
Temperatures	Operating	TCASE	-30	_	+100	°C
	Storage	Tstg	-40	_	+150	
Moisture Sensitivity Level		MSL	_	_	3	
Reflow Solder Temperat	ture (J-STD-020B)	TSOLDER	260	_	_	°C

¹ Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit at a time and all other parameters set at or below their nominal value.

² Pulsed at -1.2 V for 100 μs.

³ Applies when Vcc and Vbatt are tied together

⁴ Applied voltage must be current-limited to specified range.

Table 2. SKY77912-61 Recommended Operating Conditions¹

Unless otherwise specified: 50 Ω system; terminate all RF ports with 50 Ω during test.

Pa	rameter	Symbol	Min	Typ ²	Max	Unit
Supply Voltage ³	GMSK	V BATT	3.0	3.5	4.6	V
	EDGE/TD-SCDMA/TDD LTE		3.0	3.6	4.6	
		Vcc	3.0	_	4.6	
APT Supply Voltage		VBATT	0.5	3.6	4.3	V
GMSK Input Power – VRAMP-Based Operation		Pin	0	3	6	dBm
Operating Case Temperature ⁴	GMSK/EDGE 1–4 Slots (12.5%–50% duty cycle) ⁵	TCASE	-20	+25	+85	°C
	TD-SCDMA/TDD LTE		-20	+25	+85	

 $^{^{1}\,}$ Extreme Test Conditions (ETC) are defined by the applicable min/max values of the parameters.

Table 3. SKY77912-61 Interface Specifications

Unless otherwise specified: ETC per Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
PA Supply Current (on VBATT)	I BATT		0	1	2.5	Α
GMSK/EDGE Burst Duty Cycle	Dв		12.5	1	50	%
Resistance of VRAMP	R_VRAMP	DC resistance to ground	5		_	Ω M
Capacitance of VRAMP	C_VRAMP	Capacitance to ground	_	_	2	pF
MIPI Supply Voltage	VIO	Vramp < 1.45 V	1.65	1.8	1.95	V
MIPI Signal Levels	VMIPI_LOW		0		0.2 x VIO	
	VMIPI_HIGH		0.8 x VIO		VIO	
Power Control Voltage	VRAMP		0.2	_	1.6	V
Standby Current	I_STANDBY	Standby mode, NTC, VIO = 0 V	_	5	20	μA
TRx Mode Current	I_TRx	Any TRx Mode	_	150	300	μА

Table 4. SKY77912-61 Linear GMSK/EDGE Power Modes -- Recommended Maximum Operating Power Unless otherwise specified: Values are used as each Power Mode's PRATED Test Condition

Band	Waveform	Power Mode	Prated	Unit
LB	GMSK	High Power Mode (HPM)	33.5	dBm
		Medium Power Mode (MPM)	29.0	
		Low Power Mode (LPM)	23.0	
		Ultra-Low Power Mode (ULPM)	15	
	EDGE	Medium Power Mode (MPM)	27.5	
		Low Power Mode (LPM)	21.5	
		Ultra-Low Power Mode (ULPM)	15.5	
НВ	GMSK	High Power Mode (HPM)	30.8	
		Medium Power Mode (MPM)	28.5	
		Low Power Mode (LPM)	22.5	
		Ultra-Low Power Mode (ULPM)	14.5	
	EDGE	Medium Power Mode (MPM)	26.5	
		Low Power Mode (LPM)	20.5	
		Ultra-Low Power Mode (ULPM)	14.5	

² Nominal Test Condition (NTC) is defined by the applicable typical values.

³ VBATT and VCc should be connected unless DC/DC is used and VCc can be separately supplied. In 3G/4G TRx switch-through modes, VBATT may be set to 0 V.

⁴ Case Operating Temperature refers to the temperature at the GROUND PAD on the underside of the package.

⁵ Max. output power must be reduced by 6 dB to support 3-slot and 4-slot operation.

Table 5-1. SKY77912-61 ELECTRICAL SPECIFICATIONS – GMSK/EDGE Low Band (Linear GMSK Operation)

Unless otherwise specified: Conditions NTC per Table 2; Duty Cycle 25%; Pout = Prated per "Power Modes" Table 4 at NTC, then varies with gain

Parameter	Symbol	Waveform/ Bias Mode	Condition	Min	Тур	Max	Units
Operating Frequency Range				824		915	MHz
PSAT	PSAT_GMSK	GMSK HPM	Pin = 9 dBm, NTC	33.5	34.3	_	dBm
Psat Degraded	PSAT_GMSK_ETC	GMSK HPM	Pin = 9 dBm, ETC	31.5		_	dBm
Power Added Efficiency, saturated	PAE_GMSK_SAT	GMSK HPM	NTC Pout = Psat, Pin = 9 dBm	_	44	_	%
Power Added Efficiency	PAE_GMSK	GMSK HPM		_	41	_	
		GMSK MPM		_	24.0	_	
		GMSK LPM		_	12.0	_	
		GMSK ULPM		_	4.5	_	
Gain	GAIN_GMSK	GMSK HPM		27.7	29.7	31.7	dB
		GMSK MPM		27.5	29.5	31.5	
		GMSK LPM		26.0	28.0	30.0	
		GMSK ULPM		16.2	18.7	21.2	
Gain	GAIN_EDGE	EDGE MPM		28.0	30.7	32.7	dB
		EDGE LPM		26.0	28.0	30.0	
		EDGE ULPM		17.7	20.2	21.7	
Gain Compression Over Pout	∆Gain_pout	EDGE MPM	Gain(Prated) – Gain(Prated – 10 dB)	-1	_	1	dB
		EDGE LPM		-1	_	1	
		EDGE ULPM		-1	_	1	
Gain Change Over Temperature		GMSK HPM	ETC, except VBATT = Vcc = 3.5 V	-1.5	_	1	dB
		GMSK MPM		-1.5	_	1.2	
		GMSK LPM		-1.5	_	1.9	
		GMSK ULPM		-2.5	_	2.5	
Gain Change Over Voltage		GMSK ALL	ETC, except T = +25 °C	-0.5	_	1	dB
Power Added Efficiency	PAE_EDGE	EDGE MPM		_	19	_	%

Table 5-2. SKY77912-61 ELECTRICAL SPECIFICATIONS – GMSK/EDGE Low Band (Linear GMSK Operation)

Unless otherwise specified: Conditions NTC per Table 2; Duty Cycle 25%; Pout = Prated per "Power Modes" Table 4 at NTC, then varies with gain

Parameter	Symbol	Waveform/ Bias Mode	Condition	Min	Тур	Max	Units
Output Noise Power		ALL	NTC, Rx = 747 MHz to 757 MHz	_	_	-84	dBm/100 kHz
			NTC, Rx = 757 MHz to 762 MHz	_	_	-84	
			NTC, Rx = 869 MHz to 894 MHz	_	_	-84	
			NTC, Rx = 925 MHz to 935 MHz	_	_	-80	
			NTC, Rx = 935 MHz to 960 MHz	_	_	-83	
			NTC, Rx = 1805 MHz to 1880 MHz	_	_	-90	
			NTC, Rx = 1930 MHz to 1990 MHz	_	_	-90	
Harmonics	2f0-13f0	GMSK ALL	ETC, Pout ≤ Prated	_	_	-33	dBm
Input VSWR	VSWR_IN	ALL	NTC	_	_	2.5:1	
Stability	S	ALL	VSWR <= 12:1	_	_	-36	dBm
Ruggedness	Ru	HPM	All Load Phases	15:1	_		
Switching Transients	SWT_400	GMSK HPM	400 kHz offset	_	_	-28	dBm/30kHz
		GMSK MPM	ETC Pin adjusted for Temperature	_	_	-28	
		GMSK LPM	The adjusted for Tomporatore	_	_	-28	
		GMSK ULPM		_	_	-28	
ACPR	ACPR_200	EDGE MPM	200 kHz offset	_	_	-36.5	dBc/30 kHz
(M-ORFS, No Predistortion)		EDGE LPM	ETC ¹ Pin adjusted for Temperature	_	_	-36.5	
		EDGE ULPM	The adjusted for Tomporatore	_	_	-36.5	
	ACPR_400	EDGE MPM	400 kHz offset	_	_	-58	
		EDGE LPM	ETC ¹ Pin adjusted for Temperature	_	_	-58	
		EDGE ULPM	asjected to 1 temperature	_	_	-58	
	ACPR_600	EDGE MPM	600 kHz offset	_	_	-65	
		EDGE LPM	ETC ¹ PIN adjusted for Temperature	_	_	-65	
		EDGE ULPM		_	_	-65	
EVM (No Predistortion)	EVM_rms	EDGE MPM	ETC ¹	_	2.0	3.5	%
		EDGE LPM	Pin adjusted for Temperature	_	2.0	3.5	
		EDGE ULPM		-	2.0	3.5	

¹ ETC condition for EDGE linearity: $VBATT \ge 3.2 \text{ V. POUT} = 26.5 \text{ dBm at low VBATT.}$

Table 6-1. SKY77912-61 Electrical Specifications – GMSK Low Band (GSM850/900) GMSK Mode (Vramp-Based Operation)

Unless otherwise specified: PRATED = 33 dBm; ETC per Table 2.

Paramete	er	Symbol	Conditions	Min	Тур	Max	Unit
Frequency Range	GSM850	f0	_	824	_	849	MHz
	GSM900]		880	_	915	
Output Power		Pout_gmsk	PIN = 0 dBm VRAMP = 1.65 V NTC	33	34	_	dBm
		Pout_gmsk_ex	$\begin{split} \text{Pin} &= 0 \text{ dBm} \\ \text{VBATT} &= 3.0 \text{ V} \\ \text{VRAMP} &= 1.65 \text{ V} \end{split}$	31	_	_	
Supply Current		I BATT	_	_	_	2.5	Α
· —	y GSM850	PAE	Pout = Prated	_	40	_	%
	GSM900		NTC Duty cycle = 1:8	_	40	_	
Harmonics		2fo to 13fo	$BW = 3 \text{ MHz}$ $5 \text{ dBm} \le \text{Cal-Pout} \le \text{Prated}$ $\text{Vramp} = \text{Cal-Vramp}^{1}$	_	-40	-33	dBm
Input VSWR		VSWR_IN	Pout ≤ Prated, NTC	_	_	2.5:1	
Isolation		ISO_PDSD	$\begin{aligned} \text{Pin} &\leq 6 \text{ dBm} \\ \text{Isolation Mode} \\ \text{Vramp} &\leq 0.1 \text{ V} \end{aligned}$	_	-70	-51	dBm
		ISO_PESE	NTC PIN ≤ 6 dBm LB_GMSK_Tx Mode VRAMP ≤ 0.1 V	_	_	-15	
Mode Switching Time		T_MODE_GMSK	Time from EDGE to GMSK mode transition to application of GMSK RF input drive to meet forward isolation PESE	_	_	2	μs

Table 6-2. SKY77912-61 Electrical Specifications – GMSK Low Band (GSM850/900) GMSK Mode (Vramp-Based Operation)

Unless otherwise specified: PRATED = 33 dBm; ETC per Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit			
Stability	S	All combinations of the following parameters: 5 dBm \leq Pout \leq Prated Load VSWR = 12:1, all phase angles	No	No parasitic oscillation > -36 dBm					
Load Mismatch	Load	All combinations of the following parameters: 5 dBm \leq Pout \leq Prated Load VSWR = 20:1, all phase angles.	No	No module damage or permanent degradation					
Noise Power	PNOISE_850	$f_{\rm RX} = 869$ MHz to 894 MHz Pout = Prated NTC RBW = 100 kHz		_	-83	dBm			
	PNOISE_900	$f_{\rm R}$ X = 935 MHz to 960 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83				
		$f_{\rm R}$ X = 925 MHz to 935 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-79				
		f_Rx =1805 MHz to 1880 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-86				
	PNOISE_750	f_Rx = 734 MHz to 757 MHz POUT = PRATED NTC RBW = 100 kHz			-83				

¹ Cal-VRAMP = VRAMP at POUT = Cal-POUT, NTC

Table 7-1. SKY77912-61 Electrical Specifications – EDGE Low Band (GSM850/900) EDGE Mode Vramp-Based Operation)

Unless otherwise specified: VRAMP = 1.45 V; PRATED = 27.5 dBm; ETC per Table 2.

Parameter		Symbol	Conditions	Min	Тур	Max	Unit
Frequency Range	GSM850	f0	_	824	_	849	MHz
	GSM900			880	_	915	
Output Power		POUT_EDGE	NTC Gain / ACPR / EVM in specification	27.5	_		dBm
		POUT_EDGE_EX	Gain / ACPR / EVM in specification	26.0	_	_	
Gain		G_NOM_850	Pout = Prated	29.0	30.5	32.5	dB
		G_NOM_900	NTC	28.7	30.2	31.7	
		G_EX_850	Pout = Pout_edge,	27.0	_	33.0	
		G_EX_900	Pout_edge_ex	26.7	_	33.0	
Power Added Efficiency	GSM850	PAE_GSM850	POUT = PRATED NTC	_	19		%
	GSM900	PAE_GSM900	Duty cycle = 1:8	_	19		
Harmonics		2fo to 15fo	BW = 3 MHz 5 dBm ≤ Pout ≤ Pout_edge, Pout_edge_ex	_	-45	-36	dBm
Input VSWR		VSWR_IN	POUT ≤ PRATED, NTC	_	_	2.5:1	
ACPR		ACPR_200	Pout = Pout_edge,	_	-38.0	-36.5	dBc
		ACPR_400	Pout_edge_ex Bandwidth = 30 kHz	_	-65.0	-60.0	
		ACPR_600	- Dandwidti - 30 Kiiz	_	-75.0	-70.0	
EVM		EVM_RMS	POUT = POUT_EDGE, POUT_EDGE_EX	_	2.0	3.5	%
Bias Switching Time		T_ON_EDGE	Rx to Tx transition time from final MIPI command and 90% VRAMP to 0.5 db RF settling.	_	_	1	μs

Table 7-2. SKY77912-61 Electrical Specifications – EDGE Low Band (GSM850/900) EDGE Mode (Vramp-Based Operation)

Unless otherwise specified: VRAMP = 1.45 V; PRATED = 27.5 dBm; ETC per Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit			
Stability	S	All combinations of the following parameters: 5 dBm \leq Pout \leq Prated Load VSWR = 12:1, all phase angles	No	No parasitic oscillation > -36 dBm					
Load Mismatch	Load	All combinations of the following parameters: 5 dBm ≤ Pout ≤ Prated Load VSWR = 20:1, all phase angles.	No	No module damage or permanent degradation					
Noise Power	PNOISE_850	$f_{\rm RX}$ = 869 MHz to 894 MHz Pout = Prated NTC RBW = 100 kHz		_	-83	dBm			
	PNOISE_900	$f_{\rm R}$ x = 935 MHz to 960 MHz Pout = Prated NTC RBW = 100 kHz	_	_	-83				
		$f_{\rm R}$ x = 925 MHz to 935 MHz Pout = Prated NTC RBW = 100 kHz	_	_	-82				
		f_Rx = 1805 MHz to 1880 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-86				
	PNOISE_750	f_Rx = 734 MHz to 757 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83				

Table 8-1. SKY77912-61 ELECTRICAL SPECIFICATIONS – GMSK/EDGE High Band (Linear GMSK Operation)

Unless otherwise specified: Conditions NTC per Table 2; Duty Cycle 25%; Pout = Prated per "Power Modes" Table at NTC, then varies with gain

Parameter	Symbol	Waveform/ Bias Mode	Condition	Min	Тур	Max	Units
Operating Frequency Range				1710		1910	MHz
PSAT	PSAT_GMSK	GMSK HPM	PiN = 6 dBm, NTC	31.0	32.0	_	dBm
PSAT Degraded	PSAT_GMSK_ETC	GMSK HPM	PIN = 6 dBm, ETC	29.0		_	dBm
Power Added Efficiency, saturated	PAE_GMSK_SAT	GMSK HPM	NTC Pout = Psat, Pin = 6 dBm	_	36		%
Power Added Efficiency	PAE_GMSK	GMSK HPM		_	32.0	_	
		GMSK MPM		_	25.0	_	
		GMSK LPM		_	10.0	_	
		GMSK ULPM		_	3.5	_	
Gain	GAIN_GMSK	GMSK HPM		27.7	29.7	31.7	dB
		GMSK MPM		27.5	29.5	31.5	
		GMSK LPM		26.0	28.0	30.0	
		GMSK ULPM		19.0	21.5	31.5	
Gain	GAIN_EDGE	EDGE MPM		29.5	31.5	33.5	dB
		EDGE LPM		27.5	30.0	31.5	
		EDGE ULPM		19.7	22.2	23.7	
Gain Compression Over Pout	∆Gain_pout	EDGE MPM	Gain(Prated) — Gain(Prated — 10 dB)	-1	_	1	dB
		EDGE LPM		-1	_	1	
		EDGE ULPM		-1	_	1	
Gain Change Over Temperature		GMSK HPM	ETC, except VBATT = Vcc = 3.5 V	-1.5	_	1	dB
		GMSK MPM		-1.5	_	1.2	
		GMSK LPM		-1.5	_	1.3	
		GMSK ULPM		-2.5	_	1.8	
Gain Change Over Voltage		GMSK ALL	ETC, except T = 25 °C	-0.5	_	1	dB
PAE	PAE_EDGE	EDGE MPM		_	17	_	%

Table 8-2. SKY77912-61 ELECTRICAL SPECIFICATIONS – GMSK/EDGE High Band (Linear GMSK Operation)

Unless otherwise specified: Conditions NTC per Table 2; Duty Cycle 25%; Pout = Prated per "Power Modes" Table at NTC, then varies with gain

Parameter	Symbol	Waveform/ Bias Mode	Condition	Min	Тур	Max	Units
Output Noise Power		ALL	NTC, Rx = 747 MHz to 757 MHz	_	_	-93	dBm/100kHz
			NTC, Rx = 757 MHz to 762 MHz	_	_	-93	
			NTC, Rx = 869 MHz to 894 MHz	_	_	-93	
			NTC, Rx = 925 MHz to 935 MHz	_	_	-90	
			NTC, Rx = 935 MHz to 960 MHz	_	_	-90	
			NTC, Rx = 1805 MHz to 1880 MHz	_	_	-81	
			NTC, Rx = 1930 MHz to 1990 MHz	_	_	-82	
Harmonics	2f0-13f0	GMSK ALL	ETC, Pout ≤ Prated	_	_	-33	dBm
Input VSWR	VSWR_IN	ALL	NTC	_	_	2.5:1	
Stability	S	ALL	VSWR <= 12:1	_	_	-36	dBm
Ruggedness	Ru	НРМ	All Load Phases	15:1	_		
Switching Transients	SWT_400	GMSK HPM	400 kHz offset	_	_	-28	dBm/30kHz
		GMSK MPM	ETC PIN adjusted for Temperature	_	_	-28	
		GMSK LPM	The adjusted for remperature		_	-28	
		GMSK ULPM			_	-28	
ACPR	ACPR_200	EDGE MPM	200 kHz offset	_	_	-36.5	dBc/30kHz
(M-ORFS, no pre-distortion)		EDGE LPM	ETC ¹ Pin adjusted for Temperature	_	_	-36.5	
		EDGE ULPM	The adjusted for remperature	_	_	-36.5	
	ACPR_400	EDGE MPM	400 kHz offset	_	_	-58	
		EDGE LPM	ETC ¹ Pin adjusted for Temperature	_	_	-58	
		EDGE ULPM	The adjusted for remperature		_	-58	
	ACPR_600	EDGE MPM	600 kHz offset	_	_	-65	
		EDGE LPM	ETC ¹ Pin adjusted for Temperature	_	_	-65	
		EDGE ULPM	יווי מטןטטנפט וטר דפוווףפומנטופ	_	_	-65	
EVM	EVM_RMS	EDGE MPM	ETC ¹	_	2.0	3.5	%
(no pre-distortion)		EDGE LPM	Pin adjusted for Temperature	_	2.0	3.5]
		EDGE ULPM	7	_	2.0	3.5	

¹ ETC condition for EDGE linearity: $VBATT \ge 3.2 \text{ V. } POUT = 25.5 \text{ dBm.}$

Table 9-1. SKY77912-61 Electrical Specifications – GMSK High Band (GSM1800/1900) GMSK Mode (Vramp-based Operation)

Unless otherwise specified: PRATED = 30.5 dBm; ETC per Table 2.

Paramet	er	Symbol	Conditions	Min	Тур	Max	Unit
Frequency Range	DCS1800	f0	_	1710	_	1785	MHz
	PCS1900		_	1850	_	1916	
Output Power		Pout_gmsk	PIN = 0 dBm VRAMP = 1.65 V NTC	31.0	31.5	_	dBm
		Pout_gmsk_ex	$\begin{aligned} \text{Pin} &= 0 \text{ dBm} \\ \text{VBATT} &= 3.0 \text{ V} \\ \text{VRAMP} &= 1.65 \text{ V} \end{aligned}$	28.5	_	_	
Power Added Efficiency		PAE_DCS1800	POUT = PRATED	-	31	_	%
		PAE_PCS1900	NTC Duty cycle = 1:8	_	33	_	
Harmonics		2f0 to 7f0	$BW = 3 \text{ MHz}$ $0 \text{ dBm} \leq \text{Cal-Pout} \leq \text{Prated}$ $\text{Vramp} = \text{Cal- Vramp}^1$	_	-40	-33	dBm
Input VSWR		Гім	POUT ≤ PRATED, NTC	_	_	2.5:1	
Isolation		ISO_PDSD	$\begin{aligned} \text{Pin} &\leq 6 \text{ dBm} \\ \text{Isolation Mode} \\ \text{V}_{\text{RAMP}} &\leq 0.1 \text{ V} \end{aligned}$	_	-65	- 53	dBm
		ISO_PESE	NTC $P_{\text{IN}} \leq 6 \text{ dBm}$ $HB_GMSK_Tx \text{ Mode}$ $V_{\text{RAMP}} \leq 0.1 \text{ V}$	_	_	-15	
Mode Switching Time T_MODE_GMSK		T_MODE_GMSK	Time from EDGE to GMSK mode transition to application of GMSK RF input drive to meet forward isolation PESE	_	_	2	μs

Table 9-2. SKY77912-61 Electrical Specifications – GMSK High Band (GSM1800/1900) GMSK Mode (Vramp-based Operation) Unless otherwise specified: PRATED = 30.5 dBm; ETC per Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Stability	S	All combinations of the following parameters: 0 dBm ≤ Pout ≤ Prated Load VSWR = 12:1, all phase angles	0 dBm ≤ Pout ≤ Prated					
Load Mismatch	Load	All combinations of the following parameters: $0 \text{ dBm} \le \text{Pout} \le \text{Prated}$ Load VSWR = 20:1, all phase angles.	No	No module damage or permane degradation				
Noise Power	PNOISE_1800	f_Rx = 1805 MHz to 1880 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83	dBm		
		f_Rx = 925 MHz to 960 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-84			
	PNOISE_1900	f_Rx = 1930 MHz to 1990 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83			
		f_Rx = 869 MHz to 894 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-84			
PNOISE_750		f_Rx = 734 MHz to 757 MHz POUT = PRATED NTC RBW = 100 kHz		_	-83			

¹ Cal-VRAMP = VRAMP at POUT = Cal-POUT, NTC

Table 10-1. SKY77912-61 Electrical Specifications –EDGE High Band (GSM1800/1900) EDGE Mode (Vramp-based Operation)

Unless otherwise specified: VRAMP = 1.45 V; PRATED = 26.5 dBm; ETC per Table 2.

Paramete	r	Symbol	Conditions	Min	Тур	Max	Unit
Frequency Range	DCS1800	f0	_	1710	_	1785	MHz
	PCS1900			1850	_	1916	
Output Power		Pout_edge	NTC Gain / ACPR / EVM / in specification		_	_	dBm
		POUT_EDGE_EX	Gain / ACPR / EVM / in specification	25.0	_	_	
Gain		G_NOM_1800	Pout = PRATED	30.2	31.6	33.7	dB
		G_NOM_1900	NTC	29.5	31.1	33.0	
		G_EX_1800	POUT = POUT_EDGE, POUT_EDGE_EX		_	34.6	
		G_EX_1900			_	34.1	
Power Added Efficiency		PAE_DCS1800	VBATT = 3.6 V POUT = PRATED		17	_	%
		PAE_PCS1900	NTC Duty cycle = 1:8		18	_	
Harmonics		2fo to 7fo	BW = 3 MHz 0 dBm ≤ Pout ≤ Pout_edge, Pout_edge_ex	_	-45	-36	dBm
Input VSWR		ΓίΝ	Pout ≤ Prated, NTC	_	_	2.5:1	
ACPR		ACPR_200	Pout = Pout_edge,	_	-38.0	-36.5	dBc
		ACPR_400	Pout_edge_ex Bandwidth = 30 kHz	_	-65.0	-59.0	
		ACPR_600	Danuwiun – 50 KHZ		-75.0	-70.0	
EVM	EVM_RMS POUT = POUT_EDGE, POUT_EDGE_EX			_	2.0	3.5	%
Mode Switching Time T_ON_EDGE		T_ON_EDGE	Rx to Tx transition time from final MIPI command and 90% VRAMP to 0.5 dB RF settling		_	1	μs

Table 10-2. SKY77912-61 Electrical Specifications –EDGE High Band (GSM1800/1900) (Vramp-based Operation) Unless otherwise specified: VRAMP = 1.45 V; PRATED = 26.5 dBm; ETC per Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Stability	S	All combinations of the following parameters: No parasitic oscillation > -3 0 dBm \leq Pout \leq PRATED Load VSWR = 12:1, all phase angles					
Load Mismatch	Load	All combinations of the following parameters: $0 \text{ dBm} \leq \text{Pout} \leq \text{PRATED}$ Load VSWR = 20:1, all phase angles	No	No module damage or permanent degradation			
Noise Power	PNOISE_1800	$f_{\rm R}$ X = 1805 MHz to 1880 MHz POUT = PRATED NTC RBW = 100 kHz		_	-80	dBm	
		$f_{\rm R}$ X = 925 MHz to 960 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-84		
	PNOISE_1900	f_Rx = 1930 MHz to 1990 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-80		
		$f_{\rm R}$ x = 869 MHz to 894 MHz Pout = Prated NTC RBW = 100 kHz	_	_	-84		
	PNOISE_750	f_Rx = 734 MHz to 757 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83		

Table 11. SKY77912-61 Electrical Specifications – TD-SCDMA Band 39 (1880–1920 MHz)

Unless otherwise specified: HPM (Linear GMSK/EDGE Operation); Vramp = 1.45 V (Vramp-based Operation); ETC per Table 2.

Parameter	s	Symbol	Condition	Min	Тур	Max	Unit
Output Power		POUT_TD_NOM	NTC	24.5	_	_	dBm
		POUT_TD_EX		23.5	_	_	
Gain	High Power	GHPM_TDLTE_NOM	Pout = Pout_td_nom	27.7	29.9	31.2	dB
		GнРм_EX	Pout = Pout_td_ex	25.2		32.2	
	Low Power	GLPM	Pin = -35 dBm, Vramp = 0.3 V	_	17	22	
Power Added Efficiency PAEHPM		РАЕнрм	Pout = Pout_td_nom	_	13.5	_	%
Adjacent Channel Leakage power Ratio ¹	1.6 MHz offset	ACLR1.6	POUT_TD_NOM	_	-47	-42	dBc
			Pout_td_ex	_	_	-38	
3.2 MHz ACLR3.2 offset		ACLR3.2	POUT_TD_NOM, POUT_TD_EX	_	-64	-60	
Spectral Emissions Margin		SEM1-SEM3	Pout = Pout_td_nom, Margin to ETSI SEM mask	5	_	_	dB
Error Vector Magnitude	1	EVM_RMS	Pout_td_nom	_	1	2	%
			Pout_td_ex	_	_	2	
Harmonic Suppression	I	f02-f06	$POUT \le POUT_TD_NOM$, $POUT_TD_EX$, $RBW = 1$ MHz	_	_	-36	dBm
Tx Noise in Rx Bands ¹ DCS Rx			$f_{\rm R}$ x = 1805 MHz to 1850 MHz, Pout = Pout_td_nom NTC RBW = 100 kHz	_	_	-81	dBm
Input Voltage Standing	Wave Ratio	VSWR_IN	NTC	_	_	2.5:1	_
Rise / Fall Time		TONDC	TRx Mode to TDD LTE Tx, from MIPI command and >90% VRAMP to 0.5 dB RF settling		_	10	μѕ
		ToffDC	TDD LTE Tx to TRx Mode, from MIPI command or <10% VRAMP to 30 dB gain drop	_	_	10	
Stability		S	VSWR = 12:1 All phases, RBW = 1 MHz	_	_	-36	dBm
Ruggedness - no dama	ge	Ru	All phases, time = 10 seconds	20:1		_	VSWR

¹ Measured using ETSI TS 125.102 UL reference measurement channel (12.2 kbps), 16% duty cycle.

Table 12. SKY77912-61 Electrical Specifications – TD-SCDMA Band 34 (2010–2025 MHz)

Unless otherwise specified: HPM (Linear GMSK/EDGE Operation); VRAMP = 1.45 V (VRAMP-based Operation); ETC per Table 2.

Parameters Symbol Condition Min Typ Max Unit **Output Power** NTC 24.5 POUT_TD_NOM dBmPOUT_TD_EX 23.5 Gain High Power GHPM TDLTE NOM POUT = POUT TD NOM 26.5 28.3 30.0 dΒ **G**HРМ_EX $POUT = POUT_TD_EX$ 23.0 31.0 Low Power Pin = -35 dBm, Vramp = 0.3 VGLPM 15.0 20.0 РАЕнрм Power Added Efficiency Pout = Pout_td_nom 13.5 % Adiacent Channel 1.6 MHz ACLR1.6 -44 -40 dBc POUT TD NOM Leakage power Ratio¹ offset POUT_TD_EX -38 ACLR3.2 3.2 MHz POUT_TD_NOM, POUT_TD_EX -62 -58 offset Spectral Emissions Margin SEM1-SEM3 Pout = Pout_td_nom, Margin to ETSI SEM mask 5 dΒ Error Vector Magnitude¹ EVM_{RMS} POUT_TD_NOM 2 % 1 POUT_TD_EX 2 Harmonic Suppression¹ f02-f06 Pout \leq Pout_td_nom, Pout_td_ex, RBW = 1 MHz -36 dBm Tx Noise in Rx Bands¹ DCS Rx $f_{Rx} = 1805 \text{ MHz to } 1880 \text{ MHz},$ -81 dBm POUT = POUT TD NOM NTC, RBW = 100 kHzInput Voltage Standing Wave Ratio VSWR_IN NTC 2.5:1 Rise / Fall Time TonDC TRx Mode to TDD LTE Tx, from MIPI command and >90% 10 μs VRAMP to 0.5 dB RF settling TDD LTE Tx to TRx Mode, from MIPI command or <10% TOFFDC 10 VRAMP to 30 dB gain drop Stability S VSWR = 12:1 All phases, RBW = 1 MHz -36 dBm **VSWR** Ruggedness - no damage Ru All phases, time = 10 seconds 20:1

¹ Measured using ETSI TS 125.102 UL reference measurement channel (12.2 kbps), 16% duty cycle.

Table 13. SKY77912-61 Electrical Specifications –TDD LTE Band 39 (1880–1920 MHz)

Unless otherwise specified: HPM (Linear GMSK/EDGE Operation); VRAMP = 1.2 V (VRAMP-based Operation); ETC per Table 2.

Parameters	Symbol	Condition	Min	Тур	Max	Unit
Output Power ¹	POUT_TDLTE_NOM	NTC	23.5	_	_	dBm
	POUT_TDLTE_EX		22.5	_	_	
Gain ¹ High Power	GHPM_TDLTE_NOM	POUT = POUT_TDLTE_NOM	26.5	28.3	30.0	dB
	GHPM_TDLTE_EX	POUT = POUT_TDLTE_EX	24.0	_	30.5	
Low Power	GLPM	PIN = -35 dBm, VRAMP = 0.3 V	_	15.0	20.0	
Power Added Efficiency	РАЕнрм	POUT = POUT_TDLTE_NOM	_	13.5	_	%
Low Power Mode Current IBATT_LPM		Vramp = 0.3 V Pout = 0 dBm NTC	_	50		mA
Adjacent Channel Leakage power	EUTRA_ACLR1	POUT = POUT_TDLTE_NOM	_	-42	_	dBc
Ratio ¹		Pout = Pout_tdlte_ex	_	_	-36	
	UTRA_ACLR1	Pout = Pout_tdlte_nom	_	-45	_	
		POUT = POUT_TDLTE_EX	_	_	-39	
	UTRA_ACLR2	POUT = POUT_TDLTE_NOM	_	-48		
		POUT = POUT_TDLTE_EX	_	_	-42	
Spectral Emissions Margin	SEM1-SEM9	POUT = POUT_TDLTE_NOM, Margin to ETSI SEM mask	5	_	_	dB
Error Vector Magnitude ¹	EVM_RMS	POUT = POUT_TDLTE_NOM	_	1.7	2.5	%
		POUT = POUT_TDLTE_EX	_	_	2.5	
Harmonic Suppression ² Second	f02	POUT ≤ POUT_TDLTE_NOM, POUT_TDLTE_EX,	_	_	-36	dBm
Third	f03	RBW = 1 MHz	_	_	-46	
Tx Noise in Rx Bands ³ Band 34 Rx	PNOISE_TDLTE_B34	$f_{\rm R}$ X = 2010 to 2025 MHz, POUT = POUT_TDLTE_NOM - MPR, NTC RBW = 100 kHz	_	_	-75	
Input Voltage Standing Wave Ratio	VSWR_IN NTC		_	_	2.5:1	
Rise / Fall Time	TonDC	TRx Mode to TDD LTE Tx, from MIPI command and >90% VRAMP to 0.5 dB RF settling		_	10	μѕ
	ToffDC	TDD LTE Tx to TRx Mode, from MIPI command or <10% VRAMP to 30 dB gain drop		_	10	
Stability	S	VSWR = 12:1 All phases, RBW = 1 MHz	_	_	-36	dBm
Ruggedness - no damage	Ru	All phases, time = 10 seconds	20:1	_	_	VSWR

¹ Performance is measured using UL reference measurement channel, 10 MHz. QPSK, 12RB, per ETSI TS 136.101 (Release 12, section A.2.3.2.1-4a).

² Harmonic suppression is measured using UL reference measurement channel, 1.4 MHz, QPSK, 1RB, per ETSI TS 136.01 (Release 12, section A.2.3.2.1-1).

³ Noise is measured using UL reference measurement channel, 20 MHz, QPSK, 100 RB, per ETSI TS 136.101 (Release 12, section A.2.3.1.1)

Table 14-1. SKY77912-61 Electrical Specifications – TRx Ports - TRx1 to TRx10 Unless otherwise specified: any TRx Mode; ETC per Table 2.

I	Parameter	Symbol	Conc	litions	Min	Тур	Max	Unit
Frequency Ra	ınge	f_{-} TRX	-	_	699	-	2690	MHz
Insertion Loss	3	Rx_IL_LB	699 MHz to 960 MHz, NTC	TRx7		0.55	0.70	dB
				TRx2/3/4/9/10	_	0.65	0.80	
				TRx1/5/6/8		0.75	0.90	
		Rx_IL_MB	1710 MHz to 2400 MHz, NTC	TRx7	_	0.65	0.85	
				TRx2/3/4/9/10	_	0.90	1.20	
				TRx1/5/6/8	_	0.95	1.25	
		Rx_IL_HB	2500 MHz to 2700 MHz, NTC	TRx7	_	0.80	1.05	
				TRx2/3/4/9/10	_	1.10	1.35	
				TRx1/5/6/8	_	1.25	1.60	
TRx Mode VS	WR ¹	VSWR_TRx	NTC		_	1.5:1	1	VSWR
Isolation	Active TRx port to any	ISO_ADJ_TRx_LB	699 MHz to 960 MHz		26.0	35.0	_	dB
	adjacent TRx port	ISO_ADJ_TRx_MB	1710 MHz to 1990 MHz		23.0	30.0	-	
		ISO_ADJ_TRx_HB	2010 MHz to 2690 MHz		20.0	25.0	_	
	Active TRx port to any	ISO_NONADJ_TRx_LB	699 MHz to 960 MHz		33.5	40.0	ı	
	non-adjacent TRx port	ISO_NONADJ_TRx_MB	1710 MHz to 1990 MHz		27.0	35.0	_	
ροιτ		ISO_NONADJ_TRx_HB	2010 MHz to 2690 MHz		24.0	30.0	_	
TRx Harmonics		TRx_2f0, TRx_3f0	NTC, 50 ohm, $P_{IN_TRx} = +27 \text{ dBm}$	'		_	– 55	dBm
			NTC VSWR 5:1 at ANT port, P_IN_TRx = +27 dBm			_	-50	
Band 13 – 2 nd	^d Harmonic	TRx_2fo_B13	P_TRX = 25 dBm at 787 MHz, N	ITC		-70		dBm

Table 14-2. SKY77912-61 Electrical Specifications – TRx Ports - TRx1 to TRx10 Unless otherwise specified: any TRx Mode; ETC per Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
2^{nd} Order Intermodulation Distortion $f_{\text{IMD2}} = f_{\text{tx}} \pm f_{\text{blocker}} $	IMD2	Tx Output Power = 20 dBm CW Blocker Power = -15 dBm CW		-102	-98	dBm
3 rd Order Intermodulation Distortion	IMD3	 NTC TRx port duplexer termination VSWR ≥ 10:1 at f_blocker, 	_	-105	-102	
$f_{\text{IMD3}} = 2f_{\text{tx}} - f_{\text{blocker}}$	IMD3_TRx234	all phases		-109	-105	
Leakage from Tx to TRx Ports	P_TxTRx	Any TX Mode	_	_	0	dBm
Coupling Factor in TRx Mode ²	CPL_TRx_LB	699 to 960 MHz, NTC	-	-27		dB
	CPL_TRx_MB	1710 to 1990 MHz, NTC	_	-23	_	
	CPL_TRx_HB	2010 to 2690 MHz, NTC		-22		
Coupling Factor Variation over	CPL_SWR_TRx_LB	699 to 960 MHz, VSWR 2.5:1 at ANT port	-0.8	_	8.0	dB
Output VSWR ³	CPL_SWR_TRx_MB	1710 to 1990 MHz, VSWR 2.5:1 at ANT port	-1.0	_	1.0	
	CPL_SWR_TRx_HB	2010 to 2690 MHz, VSWR 2.5:1 at ANT port	-1.0	_	1.0	
Coupling Factor Variation over	CPL_TV_TRx_LB	699 to 960 MHz	-0.5	_	0.5	dB
Temperature ^{3,4}	CPL_TV_TRx_MB	1710 to 1990 MHz	-1.0	_	1.0	
	CPL_TV_TRx_HB	2010 to 2690 MHz	-1.0	_	1.0	
Turn-on Time	TON_VBATT	From 50% VBATT and VIO to 0.5 dB RF settling	_		20	μs
TRx-to-TRx Switch Speed	T_TRXTRX	From MIPI command to 0.5 dB RF settling	_	2	5	μs

¹ Based on the worst of TRx and ANT port reflection coefficients.

² Defined as the ratio of CPL port to ANT port output power, driven from TRx.

³ Variation with respect to 50 ohm reference.

⁴ Variation with respect to NTC.

MIPI RFFE Information

Table 15. SKY77912-61 MIPI RFFE Register Map (Linear GMSK Power Control only)

Bit Position	Description	Trigger Support	R/W	Default		Notes			
				Register 0	, Address 0x00 (Mode Cont	trol)			
[7]	Register Map & Power Control Selector	Trigger0	R/W	0	(set to 0 to select this Linea	ar GMSK Power Control register	map)		
[6:3]	PA Bias Mode Control			0000	0000 = Low Band EDGE	0100 = B34/39 TD-SCDMA	0110 = Low Band Switch OUT		
					0001 = High Band EDGE	0101 = B39 TDD LTE	0111 = High Band Switch OUT		
					0010 = Low Band GMSK				
					0011 = High Band GMSK				
[2]	PA Enable			0	0 = PA Tx Disabled	1 = PA Tx Enabled			
[1:0]	Power Range Mode			00	00 = High Power Mode (HP	M)			
					01 = Mid Power Mode (MPI	M)			
					10 = Low Power Mode (LPN	•			
					11 = Ultra-Low Power Mod	e (ULPM)			
Register 1, Address 0x01 (RESERVED)									
[7:0] RESERVED Trigger0 R/W 00000000 RESERVED									
Register 2, Address 0x02 (Switch Control)									
[7:5]	RESERVED	Trigger0	R/W	000		RESERVED			
[4:0]	Switch Control			00000	0x00 = Standby	0x06 = TRx5	0x11 = TRx1		
					0x01 = TRx9	0x07 = TRx7	0x12 = TRx10		
					0x02 = TRx8	0x08 = TRx3	0x10 = TRx8 + TRx9 (UL CA)		
					0x03 = Forward Isolation	0x09 = Low Band PA Tx	0x13 = TRx9 + TRx10 (UL CA)		
					0x04 = TRx4	0x0B = High Band PA Tx			
					0x05 = TRx6	0x0C = TRx2	Other = Reserved (Do Not Use)		
				Register	3, Address 0x03 (RESERVE	D)			
[7:0]	RESERVED	Trigger0	R/W	00000000		RESERVED			
				Register	4, Address 0x04 (RESERVE	ED)			
[7:0]	RESERVED	Trigger0	R/W	00000000		RESERVED			
				Register	5, Address 0x05 (RESERVE	ED)			
[7:0]	RESERVED		R/W	00000000		RESERVED			
				Register	6, Address 0x06 (RESERVE	ED)			
[7:0]	RESERVED		R/W	00000000		RESERVED			

Table 16. SKY77912-61 MIPI RFFE Register Map (Vramp-based Operation only)

Bit Position	Description	Trigger Support	R/W	Default		Notes	
				Register 0	, Address 0x00 (Mode	Control)	
[7]	Register Map and Power Control Selector	Trigger0	R/W	0	(set to 1 to select this	Vramp GMSK Power Control register	map)
[6]	Gain Control (GMSK)			0	0 = nominal gain	1 = reduced gain	
[5]	Gain Control (linear)			0	0 = nominal gain	1 = reduced gain	
[4:0]	TxFEM Mode Control			00000	0x00 = Standby	0x06 = Forward Isolation	0x0E = HB GMSK/ VRAMP TX
					0x01 = TRx4	0x08 = TRx9	0x0F = HB EDGE/Linear Tx
					0x02 = TRx3	0x09 = TRx6	0x14 = TRx10
					0x03 = TRx2	0x0A = LB GMSK/VRAMP Tx	0x18 = TRx1
					0x04 = TRx8	0x0B = LB EDGE/Linear Tx	0x10 = TRx8 + TRx9 (UL CA)
					0x05 = TRx5	0x0D = TRx7	0x1C = TRx9 + TRx10 (UL CA)
							Other = Reserved (Do Not Use)
				Register ·	1, Address 0x01 (Bias	Control)	
[7:4]	PA Stage 3 Bias	Trigger0	R/W	0000	0000 = 250 μΑ	0110 = 1750 μΑ	1100 = 3250 μA
	(DAC3)				0001 = 500 μA	0111 = 2000 μA	1101 = 3500 μA
					0010 = 750 μA	$1000 = 2250 \mu\text{A}$	1110 = 3750 μA
					0011 = 1000 μA	1001 = 2500 μA	1111 = 4000 μA
					0100 = 1250 μA	$1010 = 2750 \mu\text{A}$	
					0101 = 1500 μA	$1011 = 3000 \mu\text{A}$	
[3:0]	PA Stage 1-2 Bias			0000	0000 = 250 μA	0110 = 1750 μA	1100 = 3250 μA
	(DAC12)				0001 = 500 μA	$0111 = 2000 \mu\text{A}$	1101 = 3500 μA
					0010 = 750 μA	$1000 = 2250 \mu\text{A}$	1110 = 3750 μA
					0011 = 1000 μΑ	$1001 = 2500 \mu\text{A}$	1111 = 4000 μA
					0100 = 1250 μA	$1010 = 2750 \mu\text{A}$	
					0101 = 1500 μA	1011 = 3000 μΑ	
				Register	2, Address 0x02 (RES	ERVED)	
[7:0]	RESERVED	Trigger0	R/W	00000000		RESERVED	
				Register	3, Address 0x03 (RES	ERVED)	
[7:0]	RESERVED	Trigger0	R/W	00000000		RESERVED	
				Register	4, Address 0x04 (RES	ERVED)	
[7:0]	RESERVED	Trigger0	R/W	00000000		RESERVED	
				Register	5, Address 0x05 (RES	ERVED)	
[7:0]	RESERVED		R/W	00000000		RESERVED	
	•			Register	6, Address 0x06 (RES	ERVED)	
[7:0]	RESERVED		R/W	00000000		RESERVED	
	l .		ı		1		

Table 17-1. SKY77912-61 MIPI RFFE Register Map (Common Registers)

Bit Position	Description	Trigger Support	R/W	Default Value	Notes
				Register 2	6, Address 0x1A (RFFE Status)
7	SOFTWARE RESET	No	R/W	0	Reset all configurable registers to default values except for USID, GROUP_SID, and PM_TRIG. The RFFE_STATUS register shall reset after it is read. SOFTWARE RESET always reads back as zero. $0 = \text{normal operation} 1 = \text{software reset}.$
6	COMMAND_FRAME _PARITY_ERR			0	Command Sequence received with parity error – discard command. The RFFE_STATUS register shall reset after it is read.
5	COMMAND_LENGTH _ERR			0	Command length error. The RFFE_STATUS register shall reset after it is read.
4	ADDRESS_FRAME _PARITY_ERR			0	Address frame with parity error. The RFFE_STATUS register shall reset after it is read.
3	DATA_FRAME_PARITY _ERR			0	Data frame with parity error. The RFFE_STATUS register shall reset after it is read.
2	READ_UNUSED_REG			0	Read command to an invalid address. The RFFE_STATUS register shall reset after it is read.
1	WRITE_UNUSED_REG			0	Write command to an invalid address. The RFFE_STATUS register shall reset after it is read.
0	BID_GID_ERR			0	Read command with a BROADCAST_ID or GROUP_ID. The RFFE_STATUS register shall reset after it is read.
			-	Register 2	27, Address 0x1B (GROUP_ID)
7:4	(Reserved)	No	R/W	0000	(Reserved)
3:0	Group SID			0000	Group slave ID
				Register	28, Address 0x1C (PM_TRIG)
7:6	PWR_MODE	No	R/W	00	00 = Normal Operation (ACTIVE)
	(See Note)				01 = Default Settings
					10 = Low Power (LOW POWER)
					11 = Reserved
5	Trigger Mask 2			0	Trigger Enable: 0, Trigger Disable: 1
4	Trigger Mask 1			0	Trigger Enable: 0, Trigger Disable: 1
3	Trigger Mask 0			0	Trigger Enable: 0, Trigger Disable: 1
2	Trigger Register 2			0	Not supported
1	Trigger Register 1			0	Not supported
0	Trigger Register 0			0	1 = Latch Register contents

203954 003

Table 17-2. SKY77912-61 MIPI RFFE Register Map (Common Registers)

Bit Position	Description	Trigger Support	R/W	Default Value	Notes			
				Register	29, Address 0x1D (PROD_ID)			
7:0	Product ID	Product ID No R 0x9D Product ID						
				Register	30, Address 0x1E (MAN_ID)			
7:0	Manufacturer ID	No	R	0xA5	Manufacturer ID [7:0]			
Register 31, Address 0x1F (USID)								
7:6	(Reserved) No R/W 00		00	(Reserved)				
5:4	Manufacturer ID (MSB)		R	01	Manufacturer ID [9:8]			
3:0	User ID			1110	USID			
				Register 32,	Address 0x20 (EXT_PRODUCT_ID)			
7:0	EXT_PROD_ID	No	R	0x00				
				Register	35, Address 0x23 (UDR_RST)			
7	7 SOFTWARE RESET No R/W 0 1 = Reset (see Register 26)							
6:0	(Reserved)	No	R/W	0000000	Reserved. Set to zero.			

NOTE: When an RFFE Slave is initially powered up and comes out of reset, it enters Low Power Mode. During Low Power Mode, all Slave registers shall be set to their default settings.

Technical Information

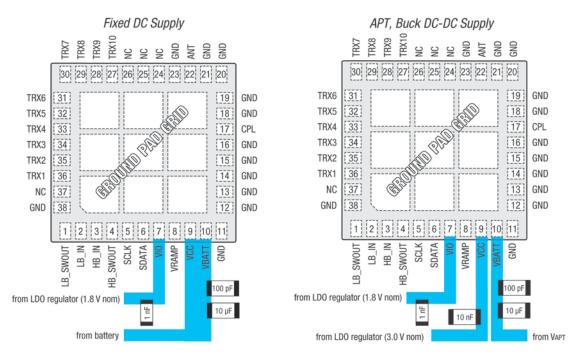


Figure 2. SKY77912-61 Application Schematics

Package Dimensions

The SKY77912-61 quad-band front-end module is a 5.5 mm x 5.3 mm x 0.71 mm, 38-pad, leadless package. Figure 3 is a three-view mechanical drawing of the pad configuration with layout

dimensions. Figure 4 provides a recommended phone board layout footprint for the FEM to help the designer attain optimum thermal conductivity, good grounding, and minimum RF discontinuity for the 50-ohm terminals.

Figure 3. Dimensional Diagram for 5.5 mm x 5.3 mm x 0.71 mm, 38-Pad Leadless Package – SKY77912-61 (All Views)

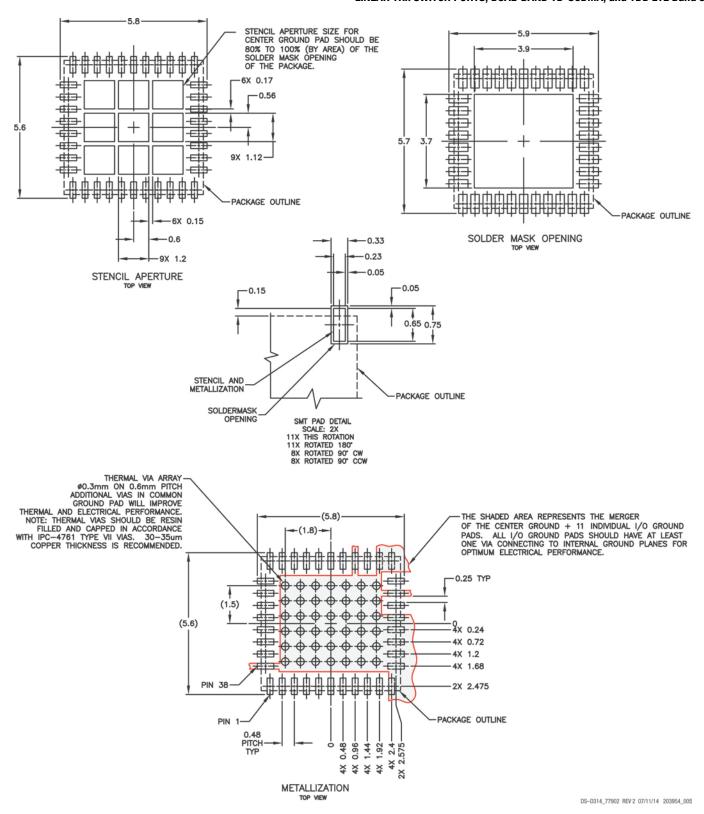


Figure 4. PCB Layout for 5.5 mm x 5.3 mm, 38-Pad Leadless Package – SKY77912-61 Specific

Package Description

Figure 5 shows the device pad configuration and the pad numbering convention, which starts with pad 1 in the lower left and increments counter-clockwise around the package. Table 18 lists the pad names and signal descriptions. Figure 6 illustrates the typical case markings.

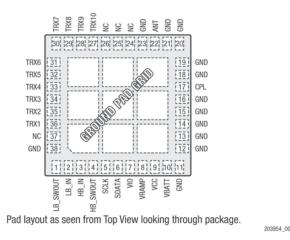


Figure 5. SKY77912-61 Pad Names and Configuration (Top View)

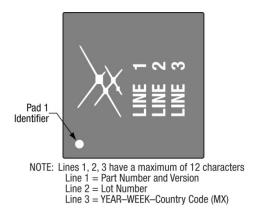


Figure 6. Typical Case Markings

Package Handling Information

Because of its sensitivity to moisture absorption, this device package is baked and vacuum-packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems relate to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY77912-61 is capable of withstanding an MSL3/260 °C solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 3 °C per second; maximum temperature should not exceed 260 °C. If the part is manually attached, precaution should be taken to insure that the part is not subjected to temperatures exceeding 260 °C for more than 10 seconds. For details on attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to Skyworks Application Note: *PCB Design and SMT Assembly/Rework*, Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the *JEDEC Standard J-STD-020*.

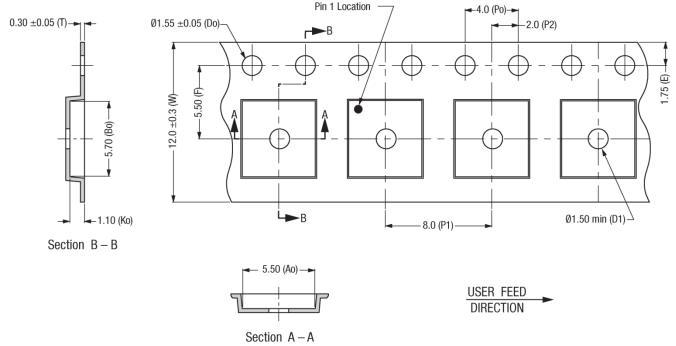

Production quantities of this product are shipped in the standard tape-and-reel format (Figure 7).

Table 18. SKY77912-61 Pad Descriptions and Functions

Pad ¹	Name	Description
1	LB_SWOUT	Alternate RF output path for LB_IN
2	LB_IN	RF input to LB PA or LB_SWOUT
3	HB_IN	RF input to HB PA or HB_SWOUT
4	HB_SWOUT	Alternate RF output path for HB_IN
5	SCLK	MIPI clock
6	SDATA	MIPI serial data
7	VIO	MIPI supply voltage
8	VRAMP	Controls GMSK power; EDGE, TD-SCDMA, TDD LTE bias
9	VCC	Output switch supply voltage
10	VBATT	PA supply voltage
17	CPL	Directional coupler RF output
22	ANT	RF output to antenna
24-26	NC	No connection
27-36	TRx10-TRx1	Wideband TRx switch ports
37	NC	No connection
Ground Pad Grid		Ground Pad Grid (device underside)

¹ Pads 11–16, 18–21, 23, and 38 are ground pads.

203954 007

NOTES:

- 1. CARRIER TAPE IS BLACK CONDUCTIVE POLYSTYRENE OR POLYCARBONATE.
- 2. COVER TAPE IS TRANSPARENT AND CONDUCTIVE.
- 3. ESD SURFACE RESISTIVITY 10⁴ TO 10¹¹ OHMS/SQ, PER EIA, JEDEC TAPE AND REEL SPEC.
- 4. Po/P1 10 PITCHES CUMULATIVE TOLERANCE ON TAPE: ±0.20 mm.
- 5. Ao & Bo MEASUREMENT POINT TO BE 0.3 mm FROM BOTTOM POCKET.
- 6. ALLOWABLE CAMBER TO BE 1/100 mm, NON-CUMULATIVE OVER 250 mm.
- 7. ALL DIMENSIONS ARE IN MILLIMETERS.

Carrier Tape for Body Size 5.3 x 5.5 x 0.80-1.10 mm D232-076D

Figure 7. Dimensional Diagram for Carrier Tape Body Size 5.3 mm x 5.5 mm x 0.85-1.10 mm - MCM

Electrostatic Discharge (ESD) Sensitivity

Attention: Observe Precautions for Handling Electrostatic-Sensitive Devices. Electrostatic Discharge (ESD) can damage this device, which must be protected from ESD at all times. Static charges may easily produce potentials of several kilovolts on the human body or equipment which can discharge without detection. Industry-standard ESD precautions should be used at all times. To avoid ESD damage, both latent and visible, it is very important that the product assembly and test areas follow the ESD handling precautions listed below

- · Personnel Grounding
 - Wrist Straps
 - Conductive Smocks, Gloves and Finger Cots
 - Antistatic ID Badges
- · Protective Workstation
 - Dissipative Table Top
 - Protective Test Equipment (Properly Grounded)
 - Grounded Tip Soldering Irons
 - Solder Conductive Suckers
 - Static Sensors

- Facility
 - Relative Humidity Control and Air Ionizers
 - Dissipative Floors (less than 1,000 M Ω to GND)
- Protective Packaging and Transportation
 - Bags and Pouches (Faraday Shield)
 - Protective Tote Boxes (Conductive Static Shielding)
 - Protective Trays
 - Grounded Carts
 - Protective Work Order Holders

Ordering Information

Product Name	Order Number	Evaluation Board Part Number
SKY77912-61 Tx-Rx Front-End Module	SKY77912-61	

Revision History

Revision	Date	Description	
А	April 1, 2016	Initial Release – Preliminary Information	CN 8829
В	June 2, 2016	Revise: Features list (p1) Bullet (Carrier Aggregation statement); Figures 2, 5; Table 18 corrected issue date in Footers.	CN 9622
С	May 19, 2017	Revise: Tables 6, 7, 9, 10, 14	CN 15784
D	September 9, 2017	Revise: Figure 3	CN 16844

References

Skyworks Application Note: *PCB Design and SMT Assembly/Rework Guidelines for MCM–L Packages;* Document Number 101752 Standard SMT Reflow Profiles: *JEDEC Standard J–STD–020*

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Front End category:

Click to view products by Skyworks manufacturer:

Other Similar products are found below:

SE2622L-R LX5586LL SKY65383-11 LX5586ALL SKY65728-11 SKY65724-11 STA8100GA SKY77912-61 QPF4632TR13

QPF4526TR13 QPF4588ATR13 QPF4211TR13 QPF4656TR13 SKY77916-21 SKY85747-11 SE2442L-R CC2590RGVR

LMP91051MTX/NOPB SKY66109-11 PN5180A0HN/C2E SKY65313-21 SKY66112-11 SKY85325-11 SKY85314-11 SKY85309-11

SKY66420-11 SKY66403-11 SKY66119-11 SKY66114-11 QPF4519SR SE5503A-R SKY66115-11 AT2401C HV7355K6-G HV7350K6-G MD2134K7-G PN5180A0HN/C1E PN5180A0HN/C1Y MCP2030-I/SL MCP2030A-ISL CMX983Q1 HV7351K6-G MCP2030A-IP

MCP2035-I/ST SE2614BT-R SE2438T-R SE2611T-R NJG1161PCD-TE1 PN5180A0ET/C4QL PN5180A0HN/C2Y