SKYWORISS

DATA SHEET

SKYA21001: 20 MHz to $\mathbf{3 . 0}$ GHz SPDT Switch

Automotive Applications

- Infotainment
- Automated toll systems
- Garage door opener
- $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ WLAN, Bluetooth ${ }^{\circledR}$ systems
- Wireless control systems
- Outdoor lighting control
- Remote keyless entry
- Telematics
- GPS/Navigation

Features

- IP1dB $=+30 \mathrm{dBm}$ typical @ 3 V
- IP3 = +43 dBm typical @ 3 V
- Low insertion loss: 0.3 dB @ 0.9 GHz
- Low DC power consumption
- Ultra-miniature, SC-70 (6-pin, $2.00 \times 1.25 \mathrm{~mm}$) package
- AEC-Q100 qualified
- JEDEC (JESD22) qualified at $25^{\circ} \mathrm{C}$
- Lead (Pb)-free and RoHS-compliant
(MSL-1 @ $260^{\circ} \mathrm{C}$ per JEDEC J-STD-020)

Skyworks Green ${ }^{\text {TM }}$ products are compliant with all applicable legislation and are halogen-free.
For additional information, refer to Skyworks Definition of Green ${ }^{T M}$, document number SQ04-0074.

Figure 1. SKYA21001 Block Diagram

Description

The SKYA21001 is a single-pole, double-throw (SPDT) switch. The device features low insertion loss and positive voltage operation with very low DC power consumption. The SKYA21001 is manufactured in a compact $2.00 \times 1.25 \mathrm{~mm}, 6$-pin SC-70 package.
A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Figure 2. SKYA21001 Pinout (Top View)

Table 1. SKYA21001 Signal Descriptions

Pin	Name	Description	Pin	Name	Description
1	J3	RF output ${ }^{1}$	4	V1	DC control voltage
2	GND	Ground	5	J1	RF output ${ }^{1}$
3	J2	RF output ${ }^{1}$	6	V2	DC control voltage

1 A 100 pF blocking capacitor is required for $>500 \mathrm{MHz}$ operation. Use larger value capacitors for lower frequency operation.

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKYA21001 are provided in Table 2. The electrical specifications of the SKYA21001 are provided in Table 3.

Typical performance characteristics are shown in Figures 3, 4, and 5 . Table 4 shows the truth table.

Table 2. SKYA21001 Absolute Maximum Ratings ${ }^{1}$

Parameter	Symbol	Minimum	Maximum	Units
Control voltage	Vctl	-0.2	+8.0	V
$\begin{aligned} & \text { RF input power (VстL = } 0 \text { to } 7 \mathrm{~V} \text {): } \\ & >500 \mathrm{MHz} \\ & \quad<500 \mathrm{MHz} \end{aligned}$			$\begin{aligned} & +36 \\ & +27 \end{aligned}$	$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
Operating temperature	Top	-40	+105	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65	+150	${ }^{\circ} \mathrm{C}$
Electrostatic discharge: Human Body Model (HBM), Class 1A Charged Device Model (CDM), Class C3	ESD		$\begin{gathered} 250 \\ 1000 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

1 Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

Table 3. SKYA21001 Electrical Specifications ${ }^{1}$
(Vcrı = 0 to 3 V , Top = +25 ${ }^{\circ} \mathrm{C}$, Characteristic Impedance $=\mathbf{5 0 \Omega}$, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Insertion loss ${ }^{2,3}$	IL	$\begin{aligned} & 0.7 \text { to } 1.0 \mathrm{GHz}, 25^{\circ} \mathrm{C} \\ & 1.0 \text { to } 2.0 \mathrm{GHz}, 25^{\circ} \mathrm{C} \\ & 2.0 \text { to } 3.0 \mathrm{GHz}, 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Insertion loss (ETC) ${ }^{4}$	IL	0.7 to $1.0 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ 1.0 to $2.0 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ 2.0 to $3.0 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$		$\begin{aligned} & 0.35 \\ & 0.41 \\ & 0.46 \end{aligned}$	$\begin{gathered} \hline 0.45 \\ 0.55 \\ 0.7 \end{gathered}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation ${ }^{3}$	ISO	$\begin{aligned} & 0.7 \text { to } 1.0 \mathrm{GHz}, 25^{\circ} \mathrm{C} \\ & 1.0 \text { to } 2.0 \mathrm{GHz}, 25^{\circ} \mathrm{C} \\ & 2.0 \text { to } 3.0 \mathrm{GHz}, 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 23 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation (ETC) ${ }^{4}$	IS0	0.7 to $1.0 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ 1.0 to $2.0 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ 2.0 to $3.0 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	$\begin{aligned} & 22 \\ & 22 \\ & 20 \end{aligned}$	$\begin{gathered} 24 \\ 23.5 \\ 23 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Voltage standing wave ratio	VSWR	0.7 to $1.0 \mathrm{GHz}, 25^{\circ} \mathrm{C}$ 1.0 to $2.0 \mathrm{GHz}, 25^{\circ} \mathrm{C}$ 2.0 to $3.0 \mathrm{GHz}, 25^{\circ} \mathrm{C}$		$\begin{aligned} & 1.2: 1 \\ & 1.2: 1 \\ & 1.3: 1 \end{aligned}$	$\begin{aligned} & 1.4: 1 \\ & 1.4: 1 \\ & 1.45: 1 \end{aligned}$	
Voltage standing wave ratio (ETC) ${ }^{4}$	VSWR	0.7 to $1.0 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ 1.0 to $2.0 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ 2.0 to $3.0 \mathrm{GHz},-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$		$\begin{aligned} & 1.2: 1 \\ & 1.2: 1 \\ & 1.3: 1 \end{aligned}$	$\begin{aligned} & \hline 1.4: 1 \\ & 1.4: 1 \\ & 1.45: 1 \end{aligned}$	
Switching characteristics: Rise/fall On/off Video feedthrough	$\begin{aligned} & \text { Tsw } \\ & \text { Ton } \end{aligned}$	$10 / 90 \%$ or $90 / 10 \%$ RF, $25^{\circ} \mathrm{C}$ 50% control to $90 / 10 \% \mathrm{RF}, 25^{\circ} \mathrm{C}$ bandwidth $=500 \mathrm{MHz}, 25^{\circ} \mathrm{C}$		$\begin{gathered} 90 \\ 125 \\ 25 \end{gathered}$	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{mV} \end{aligned}$
Switching characteristics (ETC): ${ }^{4}$ Rise/fall (ETC) On/off (ETC)	$\begin{aligned} & \text { Tsw } \\ & \text { Ton } \end{aligned}$	$10 / 90 \%$ or $90 / 10 \%$ RF, $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ 50% control to $90 / 10 \%$ RF, $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$		$\begin{gathered} 90 \\ 150 \end{gathered}$	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	ns ns
1 dB input compression point	IP1dB	0.7 to 3.0 GHz : $\begin{aligned} & \text { VстL }=0 \text { to } 2 \mathrm{~V}, 25^{\circ} \mathrm{C} \\ & \text { VстL }=0 \text { to } 3 \mathrm{~V}, 25^{\circ} \mathrm{C} \\ & \text { VстL }=0 \text { to } 5 \mathrm{~V}, 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +23 \\ & +28 \\ & +31 \end{aligned}$	$\begin{aligned} & +25 \\ & +30 \\ & +34 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
1 dB input compression point (ETC) ${ }^{4}$	IP1dB	$\begin{aligned} & 0.7 \text { to } 3.0 \mathrm{GHz}: \\ & \text { VстL }=0 \text { to } 2 \mathrm{~V}, 25^{\circ} \mathrm{C} \\ & \text { VстL }=0 \text { to } 3 \mathrm{~V}, 25^{\circ} \mathrm{C} \\ & \text { VстL }=0 \text { to } 5 \mathrm{~V}, 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +18 \\ & +23 \\ & +26 \end{aligned}$	$\begin{aligned} & +20 \\ & +26 \\ & +30 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
Third order intercept point	IP3	+5 dBm two-tone input power @ 0.7 to 3.0 GHz : $\begin{aligned} & \text { VCtL }=0 \text { to } 2 \mathrm{~V}, 25^{\circ} \mathrm{C} \\ & \mathrm{~V} \text { стL }=0 \text { to } 3 \mathrm{~V}, 25^{\circ} \mathrm{C} \\ & \mathrm{~V} \text { СтL }=0 \text { to } 5 \mathrm{~V}, 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +36 \\ & +42 \\ & +44 \end{aligned}$	$\begin{aligned} & +49 \\ & +52 \\ & +53 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
Third order intercept point (ETC) ${ }^{4}$	IP3	$\begin{aligned} & \text { VстL }=0 \text { to } 2 \mathrm{~V},-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ & \text { VстL }=0 \text { to } 3 \mathrm{~V},-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \\ & \text { VстL }=0 \text { to } 5 \mathrm{~V},-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +35 \\ & +39 \\ & +41 \end{aligned}$	$\begin{aligned} & +49 \\ & +50 \\ & +51 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$ dBm
Control voltage: Low (@ $20 \mu \mathrm{~A}$ max) High (@100 $\mu \mathrm{A}$ max) High (@ $200 \mu \mathrm{~A}$ max)	Vatl_L VctL_H Vctl_h		0		$\begin{aligned} & 0.2 \\ & 2.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$

[^0]
Typical Performance Characteristics

Figure 3. Insertion Loss vs Frequency

Figure 4. Isolation vs Frequency

Figure 5. VSWR vs Frequency

Table 4. Truth Table (VHigh = $\mathbf{2 . 0}$ to 5.0 V, VLow = $\mathbf{- 0 . 2}$ to +0.2 V) ${ }^{\mathbf{1}}$

V1	V2	J1-J2	J1-J3
VHIGH	VLow	Isolation	Insertion loss
VLow	VHIGH	Insertion loss	Isolation

[^1]
Evaluation Board Description

The SKYA21001 Evaluation Board is used to test the performance of the SKYA21001 SPDT switch. An Evaluation Board schematic
diagram is provided in Figure 6. An assembly drawing for the Evaluation Board is shown in Figure 7.

Figure 6. SKYA21001 Evaluation Board Schematic

Figure 7. SKYA21001 Evaluation Board Assembly Diagram

Package Dimensions

The PCB layout footprint for the SKYA21001 is shown in Figure 8. Package dimensions are shown in Figure 9, and tape and reel dimensions are provided in Figure 10.

Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.
The SKYA21001 is rated to Moisture Sensitivity Level 1 (MSL1) at $260^{\circ} \mathrm{C}$. It can be used for lead or lead-free soldering.
Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

202936-008
Figure 8. SKYA21001 PCB Layout Footprint

Figure 9. SKYA21001 Package Dimensions

Notes:

1. Carrier tape: black conductive polystyrene.
2. Cover tape material: transparent conductive HSA.
3. Cover tape size: 5.40 mm width.
4. Ten sprocket hole pitch cumulative tolerance $\pm 0.20 \mathrm{~mm}$.
5. All measurements are in millimeters.

Figure 10. SKYA21001 Tape and Reel Dimensions

Ordering Information

Part Number	Product Description	Evaluation Board Part Number
SKYA21001	20 MHz to 3.0 GHz SPDT Switch	SKYA21001-EVB

Copyright © 2013-2015, 2017-2018 Skyworks Solutions, Inc. All Rights Reserved.
Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Skyworks manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

[^0]: 1 Performance is guaranteed only under the conditions listed in this table.
 2 Insertion loss changes by $0.003 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.
 3 Insertion loss state.
 4 ETC $=$ Extreme Test Conditions (VCTL $=0$ to $5 \mathrm{~V}, \mathrm{TOP}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$).

[^1]: 1 Any state other than described in this table places the device in an undefined state. An undefined state does not damage the device.

