PNP Silicon Epitaxial Planar Transistor

for switching and amplifier applications

1. Emitter 2. Base 3. Collector
2. Emitter 5. Base 6. Collector

■ Simplified outline(SOT-363)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit
Collector Base Voltage	$-\mathrm{V}_{\mathrm{CBO}}$	60	V
Collector Emitter Voltage	$-\mathrm{V}_{\text {CEO }}$	60	V
Emitter Base Voltage	$-\mathrm{V}_{\text {EBO }}$	5	V
Collector Current	$-\mathrm{I}_{\mathrm{C}}$	600	mA
Power Dissipation	$\mathrm{P}_{\text {tot }}$	200	mW
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

MMDT2907A

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Unit
DC Current Gain $\begin{aligned} & \text { at }-\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA} \\ & \mathrm{at}-\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{at}-\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ & \mathrm{at}-\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} \\ & \text { at }-\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V},--_{\mathrm{C}}=500 \mathrm{~m} \end{aligned}$	$h_{\text {FE }}$ $h_{\text {FE }}$ $h_{\text {FE }}$ $h_{\text {FE }}$ $\mathrm{h}_{\text {FE }}$	$\begin{gathered} 75 \\ 100 \\ 100 \\ 100 \\ 50 \\ \hline \end{gathered}$	300	
Collector Base Cutoff Current at $-\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}$	$-\mathrm{I}_{\text {cbo }}$	-	100	nA
Collector Emitter Cutoff Current at $-\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}$	- ${ }_{\text {ces }}$	-	100	nA
Emitter Base Cutoff Current at $-V_{E B}=3 \mathrm{~V}$	$-l_{\text {ebo }}$	-	100	nA
Collector Base Breakdown Voltage at $-I_{C}=10 \mu \mathrm{~A}$	$-\mathrm{V}_{\text {(BR)CBO }}$	60	-	V
Collector Emitter Breakdown Voltage at $-I_{C}=10 \mathrm{~mA}$	$-\mathrm{V}_{\text {(BR)CEO }}$	60	-	V
Emitter Base Breakdown Voltage at $-I_{E}=10 \mu \mathrm{~A}$	$-\mathrm{V}_{\text {(BR) }{ }^{\text {ebo }}}$	5	-	V
Collector Emitter Saturation Voltage at $-I_{C}=150 \mathrm{~mA},-I_{\mathrm{B}}=15 \mathrm{~mA}$ at $-I_{C}=500 \mathrm{~mA},-I_{\mathrm{B}}=50 \mathrm{~mA}$	$-\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	$\begin{aligned} & 0.4 \\ & 1.6 \end{aligned}$	V
$\begin{aligned} & \text { Base Emitter Saturation Voltage } \\ & \text { at }-I_{\mathrm{C}}=150 \mathrm{~mA},-I_{\mathrm{B}}=15 \mathrm{~mA} \\ & \text { at }-\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA},--_{\mathrm{B}}=50 \mathrm{~mA} \end{aligned}$	$-\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	$\begin{aligned} & 1.3 \\ & 2.6 \end{aligned}$	V
Transition Frequency at $-\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$	f_{T}	200	-	MHz
Collector Output Capacitance at $-\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=100 \mathrm{KHz}$	$\mathrm{C}_{\text {ob }}$	-	8	pF
Turn-on Time at $-\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V},-\mathrm{V}_{\mathrm{BE}(\mathrm{OFF})}=1.5 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA},-\mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~mA}$	$\mathrm{t}_{\text {on }}$	-	50	ns
Delay Time $\text { at }-\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V},-\mathrm{V}_{\mathrm{BE}(\mathrm{OFF})}=1.5 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA},-\mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~mA}$	t_{d}	-	10	ns
Rise Time at $-\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V},-\mathrm{V}_{\mathrm{BE}(\mathrm{OFF})}=1.5 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA},-\mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~mA}$	t_{r}	-	40	ns
Turn-off Time at $-\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=-15 \mathrm{~mA}$	$\mathrm{t}_{\text {off }}$	-	100	ns
Storage Time $\text { at }-\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=-15 \mathrm{~mA}$	$\mathrm{t}_{\text {stg }}$	-	80	ns
Fall Time at $-\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=-15 \mathrm{~mA}$	t_{f}	-	30	ns

MMDT2907A

Fig. 1 Groundedemitteroutput oharanteristios

Fig. 2 Base-emitter saturation voltage vs collector current

Fig. 3 DG current gain ve collector current (1)

Fig. 4 DCcurrent gain vs. collector current (II)

Fig. 5 Turn-on time vs.collector current

Fig. 7 Storage time vs. collector current

Fig. 9 Collector-emitter saturation voltage vs collector current

Fig. 6 Rise time vs. collector oument

Fig. 8 Fall time vs. collector current

Fig. 10 Power Dissipation vs Ambient Temperature

detail X

$$
\begin{aligned}
& \text { scale }
\end{aligned}
$$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$ $\boldsymbol{m a x}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{E}}$	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}
mm	1.1	0.1	0.30	0.25	2.2	1.35	1.3	0.65	2.2	0.45	0.25	0.2	0.2	0.1
	0.8	0.20	0.10	1.8	1.15	2.0	0.15	0.15	0.2	0.2				

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by SLKORMICRO manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H MMBT-2369-TR BC546/116 BC557/116 BSW67A NJVMJD148T4G NTE123AP-10 NTE153MCP NTE16 NTE195A NTE92 2N4401-A 2N6728 2SA1419T-TD-H 2SA2126-E 2SB1204S-TL-E 2SC2712S-GR,LF SP000011176 2N2907A 2N3904NS 2N5769 2SC2412KT146S CPH6501-TL-E MCH4021-TL-E MJE340 Jantx2N5416 US6T6TR NJL0281DG 732314D CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 MMST8098T146 UMX21NTR MCH6102-TL-E NJL0302DG 30A02MH-TL-E NTE13 NTE26 NTE282 NTE323 NTE350 NTE81 STX83003-AP JANTX2N2920L JANSR2N2222AUB CMLT3946EG TR 2SA1371D-AE

