
Dual NPN Bias Resistor Transistors

Dual Bias ResistorTransistors NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base—emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the SMUN5211DW, two BRT devices are housed in the SOT–363 package which is ideal for low power surface mount applications where board space is at a premium.

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- We declare that the material of product compliance with RoHS requirements.

SOT-363

DEVICE MARKING, RESISTOR VALUES AND ORDERING INFORMATION

Device	Package	Marking	R1(K)	R2(K)	Shipping
SMUN5211DW	SOT-363	7A	10	10	3000/Tape&Reel

MAXIMUM RATINGS (T A = 25°C unless otherwise noted, common for Q 1 and Q 2)

Rating	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current	Ιc	100	mAdc

THERMAL CHARACTERISTICS

Characteristic			
(One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation	P _D	187 (Note 1.)	mW
T _A = 25°C		256 (Note 2.)	
Derate above 25°C		1.5 (Note 1.)	mW/°C
		2.0 (Note 2.)	
Thermal Resistance –	R _{θJA}	670 (Note 1.)	°C/W
Junction-to-Ambient		490 (Note 2.)	
Characteristic			
(Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation	Pρ	250 (Note 1.)	mW
T _A = 25°C		005 (Nata 0.)	
1 A-200		385 (Note 2.)	
Derate above 25°C		385 (Note 2.) 2.0 (Note 1.)	mW/°C
		,	mW/°C
	R _{θJA}	2.0 (Note 1.)	mW/°C
Derate above 25°C	R _{θJA}	2.0 (Note 1.) 3.0 (Note 2.)	
Derate above 25°C Thermal Resistance –	R _{θJA}	2.0 (Note 1.) 3.0 (Note 2.) 493 (Note 1.)	
Derate above 25°C Thermal Resistance – Junction-to-Ambient		2.0 (Note 1.) 3.0 (Note 2.) 493 (Note 1.) 325 (Note 2.)	°C/W
Derate above 25°C Thermal Resistance – Junction-to-Ambient Thermal Resistance –		2.0 (Note 1.) 3.0 (Note 2.) 493 (Note 1.) 325 (Note 2.) 188 (Note 1.)	°C/W

1. FR-4 @ Minimum Pad

2. FR-4 @ 1.0 x 1.0 inch Pad

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted, common for Q ₁ and Q ₂,)(Continued)

Parameter	Symbol	Min.	Max.	Unit
DC Current Gain at V _{CE} = 10 V, I _C = 5 mA	h _{FE}	35	-	-
Collector Base Cutoff Current at $V_{CB} = 50 \text{ V}$	I _{CBO}	-	100	nA
Collector Emitter Cutoff Current at V _{CE} = 50 V	I _{CEO}	-	500	nA
Emitter Base Cutoff Current at V _{EB} = 6 V	I _{EBO}	-	0.5	mA
Collector Base Breakdown Voltage at I_C = 10 μ A	$V_{(BR)CBO}$	50	-	V
Collector Emitter Breakdown Voltage at I _C = 2 mA	$V_{(BR)CEO}$	50	-	V
Collector Emitter Saturation Voltage at I _C = 10 mA, I _B = 0.3 mA	V _{CEsat}	-	0.25	V

SMUN5211DW

ELECTRICAL CHARACTERISTICS $(T_A = 25^{\circ}C \text{ unless otherwise noted, common for Q }_{1} \text{ and Q }_{2},)(Continued)$

Parameter	Symbol	Min.	Max.	Unit
Output Voltage (on) at V_{CC} = 5 V, V_B = 2.5 V, R_L = 1 K Ω	V _{OL}	-	0.2	>
Output Voltage (off) at $V_{CC} = 5 \text{ V}$, $V_B = 0.5 \text{ V}$, $R_L = 1 \text{ K}\Omega$	V _{OH}	4.9	-	V
Input Resistor	R1	7	13	ΚΩ
Resistor Ratio	R1/R2	0.8	1.2	-

TYPICAL ELECTRICALCHARACTERISTICS

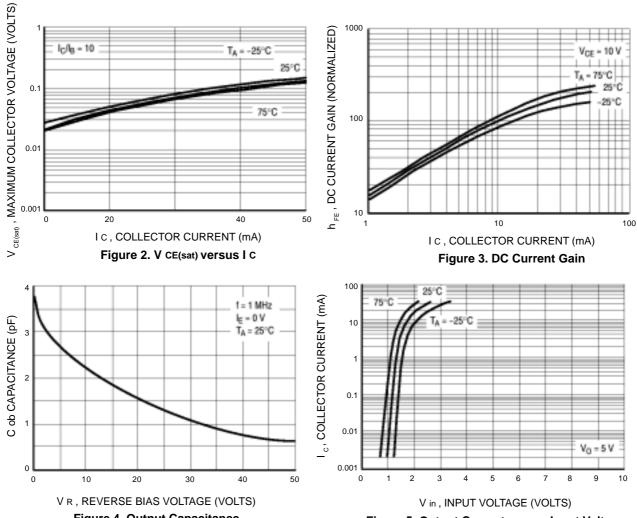
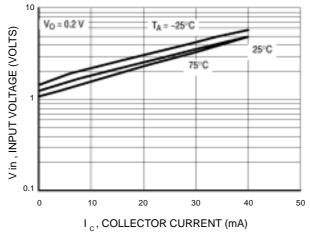
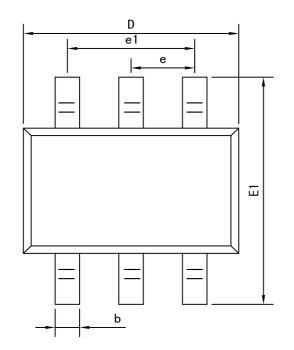
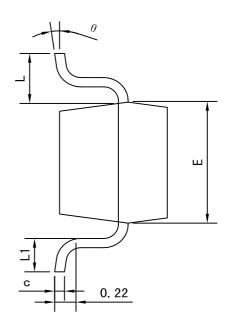
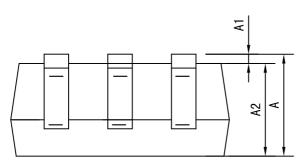


Figure 4. Output Capacitance

Figure 5. Output Current versus Input Voltage


Figure 6. Input Voltage versus Output Current

SOT-363 Package outline dimensions

Cumbal	Dimension in	Millimeters		
Symbol	Min	Мах		
А	0.900	1.100		
A1	0.000	0.100		
A2	0.900	1.000		
b	0.150	0.350		
С	0.080	0.150		
D	2.000	2.200		
Е	1.150	1.350		
E1	2.150	2.450		
е	0.650	0.650 TYP		
e1	1.200	1.400		
L	0.525	0.525 REF		
L1	0.260	0.460		
θ	0°	8°		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - Pre-Biased category:

Click to view products by SLKORMICRO manufacturer:

Other Similar products are found below:

DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146

DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 SMUN5330DW1T1G RN1306(TE85L,F) EMH15T2R NSBC143ZPDP6T5G

DTC114EUA-TP SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G DTC124ECA-TP DTA114ECA-TP DTC113EM3T5G

NSVMUN5135DW1T1G NSVMUN2237T1G NSVDTC143ZM3T5G SMUN5335DW1T2G SMUN5216DW1T1G NSVMUN5316DW1T1G

NSVMUN5215DW1T1G NSVMUN5213DW1T3G NSVIMD10AMT1G NSVEMC2DXV5T1G NSVDTC144WET1G NSVDTC123JET1G

NSVDTA143EM3T5G NSVB1706DMW5T1G NSBC143EDP6T5G NSBA144WDXV6T1G DTA115TET1G NSBC115TDP6T5G

NSBA113EF3T5G MUN2235T1G NSBC143ZDXV6T5G NSVDTA114EM3T5G MUN2138T1G DCX124EUQ-7-F MUN2141T1G

DTC144TET1G MUN2238T1G SMUN5112DW1T1G NSVMUN5131T1G