75 Watt Multiple Output Global Performance Switchers

FEATURES:

- Cost-effective multiple output power source
- Universal input 90-264 Vac
- 7.00"x 4.25"x 1.30" (Meets 1U height)
- 2-year warranty
- Conducted EMI exceeds FCC Class B and CISPR 22 Class B (Commercial models) and CISPR 11 Class B (Medical models)
- Complies with EN61000-3-2 Class A
- Also available in single output versions
- Commercial UL1950 3rd Edition, CSA22.2 No. 950 and EN60950-1 approvals
- Medical Approved to UL2601-1, CSA22.2 No. 601.1-M90, and IEC/EN60601-1
- RoHS Compliant Model Available (G suffix)

SPECIFICATIONS

Ac Input

90-264 Vac, 47-63 Hz single phase.

Input Current

Maximum input current at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$ with full rated output load not to exceed 2.3 A.

Output Power

Normal continuous output power is 75 W for unrestricted natural convection cooling or 110 W with 26 cfm airflow. During peak load conditions output regulation may exceed total regulation and noise limits.

Output Regulation
Measured by $\pm 40 \%$ load change from 60% rated load with all other outputs at 60\% rated load and input voltage change from minimum to maximum ratings. Output \#1 requires 1A minimum load for proper regulation of other outputs. Initial set tolerance is measured with all outputs at 60% of full rated load. Output \#2 requires 0.5A minimum load for proper regulation.

Overload Protection
Factory set to begin power limiting at approximately 120 W . Fully protected against short circuit and output overload. Short circuit protection is cycling type power limit.

Output Noise

$0.5 \% \mathrm{rms}, 1 \% \mathrm{pk}-\mathrm{pk}, 20 \mathrm{MHz}$ bandwidth, differential mode. Measured with noise probe directly across output terminals of the power supply.

Transient Response

Main Output: $500 \mu \mathrm{Sec}$ typical response time for return to within 0.5% of final value for a 50% load step change, $\Delta \mathrm{i} / \Delta \mathrm{t}<0.2 \mathrm{~A} / \mu \mathrm{Sec}$. Maximum voltage deviation is 3.5%.

Overvoltage Protection
Built in on V1 with firing point set per table. OVP firing reduces output \#1 and \#2 to less than 50% of nominal voltage in 50 ms .
Voltage Adjust
Factory set on standard unit; however, optional potentiometer ("-V" suffix) adjusts voltage from 4.7 V to OVP point (6.2 V nominal) on the +5 V output. Note: Output \#1 must not be more than 1% below nominal to achieve full output voltage range on Output \#2. Output regulation limits in some models may be exceeded when the main output is adjusted beyond $+1 \%$ of nominal voltage. High voltage settings may degrade the reliability of the unit due to excessive power dissipation in some outputs.

Efficiency

$68 \%-78 \%$ depending on model and load distribution.

Input Protection

Internal ac fuse provided on all units. Designed to blow only if a catastrophic failure occurs in the unit.

Inrush Current
Inrush limited by internal thermistors. Inrush at 240 Vac , averaged over the first ac half-cycle under cold start conditions will not exceed 37 A .
Hold Up Time
20 ms minimum from loss of ac input power at full load, nominal line (120 Vac).
Temperature Coefficient
$0.03 \% /{ }^{\circ} \mathrm{C}$ typical on all outputs.

Power Fail

A standard TTL or CMOS compatible output goes low (<0.5 V) 5 ms before output voltage drops more than 4% below nominal voltage upon loss of ac power. Signal is factory set to trip on 84 to 94 Vac brown-out depending upon incoming line impedance and distortion. Other settings are available through adjustment of built-in potentiometer (consult factory for assistance). Output will stay low for 20 ms minimum.

EMI/EMC Compliance
All models include built-in EMI filtering to meet the following emissions requirements:

EMI SPECIFICATIONS	COMPLIANCE LEVEL
Conducted Emissions GLC75	EN55022 Class B; FCC Class B
Conducted Emissions GLM75	EN55011 Class B: FCC Class B
Static Discharge	EN61000-4-2, 6 kV contact, 8 kV air
RF Field Susceptibility	EN61000-4-3, 3 V/meter
Fast Transients/Bursts	EN61000-4-4, 2 kV, 5 kHz
Surge Susceptibility	
Line Frequency Harmonics	EN61000-4-5, 1 kV diff., 2 kV com.
Commercial Safety All GLC models are approved to UL1950 3rd Edition, CSA22.2 No. 950, and EN60950-1.	

Medical Leakage Current
$70 \mu \mathrm{~A} 264 \mathrm{~V}$ @ 50 Hz (normal conditions).

Medical Safety

GLM models are approved to UL2601-1, CSA22.2 No. 601.1M90, IEC/EN60601-1. CB Report available.

Commercial Model	Medical Model	RoHS Suffix*	Output No.	Output	Output Minimum	Output Maximum (A)	Output Maximum (B)	Output Peak	V1 OVP Set	Noise P-P	Regulation
GLC75A	GLM75A	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{v} \\ & +12 \mathrm{v} \\ & -12 \mathrm{v} \\ & +12 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \mathrm{~A} \\ 0 \mathrm{~A} \end{gathered}$	$\begin{gathered} 8 \mathrm{~A} \\ 2 . \mathrm{A} \\ 1 \mathrm{~A} \\ 2.5 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} 12 \mathrm{~A} \\ 4 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 4 \mathrm{~A} \end{gathered}$	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{gathered} 50 \mathrm{mV} \\ 120 \mathrm{mV} \\ 120 \mathrm{mV} \\ 120 \mathrm{mV} \end{gathered}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \%(\mathrm{D}) \\ 3 \% \\ 2 \% \end{gathered}$
GLC75B	GLM75B	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{v} \\ & +12 \mathrm{v} \\ & -5 \mathrm{v} \\ & +12 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \mathrm{~A} \\ 0 \mathrm{~A} \end{gathered}$	$\begin{array}{r} 8 \mathrm{~A} \\ 2 . \mathrm{A} \\ 1 \mathrm{~A} \\ 2.5 \mathrm{~A} \end{array}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} 12 \mathrm{~A} \\ 4 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 4 \mathrm{~A} \end{gathered}$	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{gathered} 50 \mathrm{mV} \\ 120 \mathrm{mV} \\ 50 \mathrm{mV} \\ 120 \mathrm{mV} \end{gathered}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \%(\mathrm{D}) \\ 3 \% \\ 2 \% \end{gathered}$
GLC75C	GLM75C	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -15 \mathrm{v} \\ & +15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \mathrm{~A} \\ 0 \mathrm{~A} \end{gathered}$	$\begin{gathered} 8 \mathrm{~A} \\ 2 . \mathrm{A} \\ 1 \mathrm{~A} \\ 2.5 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} 12 \mathrm{~A} \\ 4 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 4 \mathrm{~A} \end{gathered}$	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{aligned} & 50 \mathrm{mV} \\ & 120 \mathrm{mV} \\ & 150 \mathrm{mV} \\ & 150 \mathrm{mV} \end{aligned}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \%(\mathrm{D}) \\ 3 \% \\ 2 \% \end{gathered}$
GLC75D	GLM75D	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{~V} \\ & +24 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & +12 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \mathrm{~A} \\ 0 \mathrm{~A} \end{gathered}$	$\begin{gathered} 8 \mathrm{~A} \\ 2 . \mathrm{A} \\ 1 \mathrm{~A} \\ 2.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} 10 \mathrm{~A} \\ 2 . \mathrm{A} \\ 1 \mathrm{~A} \\ 3 \mathrm{~A} \end{gathered}$	$\begin{gathered} 12 \mathrm{~A} \\ 3.5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 4 \mathrm{~A} \end{gathered}$	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{aligned} & 50 \mathrm{mV} \\ & 240 \mathrm{mv} \\ & 120 \mathrm{mV} \\ & 120 \mathrm{mV} \end{aligned}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \%(\mathrm{D}) \\ 3 \% \\ 2 \% \end{gathered}$
GLC75E	GLM75E	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{~V} \\ & +24 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & +15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \mathrm{~A} \\ 0 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{array}{r} 8 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} 10 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 3 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 12 \mathrm{~A} \\ 3.5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 4 \mathrm{~A} \\ \hline \end{gathered}$	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{aligned} & 50 \mathrm{mV} \\ & 240 \mathrm{mV} \\ & 150 \mathrm{mV} \\ & 150 \mathrm{mV} \end{aligned}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \% \text { (D) } \\ 3 \% \\ 2 \% \end{gathered}$
GLC75F	GLM75F	G	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{~V} \\ & +15 \mathrm{~V} \\ & -5 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \\ 0 \\ \hline \end{gathered}$	$\begin{array}{r} 8 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} \hline 10 \mathrm{~A} \\ 3 \mathrm{~A} \\ 1 \mathrm{~A} \\ 3 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 12 \mathrm{~A} \\ 4 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 4 \mathrm{~A} \\ \hline \end{gathered}$	$6.2 \pm 0.6 \mathrm{~V}$	50 mV 150 mV 50 mV 150 mV	$\begin{gathered} 2 \% \\ +10 \%,-5 \% \text { (D) } \\ 3 \% \\ 2 \% \\ \hline \end{gathered}$
GLC75H	GLM75H	G	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{v} \\ & +15 \mathrm{v} \\ & -15 \mathrm{v} \\ & +15 \mathrm{v} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} 8 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 12 \mathrm{~A} \\ 4 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 4 \mathrm{~A} \\ \hline \end{gathered}$	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{aligned} & 50 \mathrm{mV} \\ & 150 \mathrm{mV} \\ & 150 \mathrm{mV} \\ & 150 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \%(\mathrm{D}) \\ 3 \% \\ 2 \% \\ \hline \end{gathered}$
GLC75J	GLM75J	G	$\begin{gathered} 1 \\ 2 \\ 3 \\ 3(\mathrm{C}) \end{gathered}$	$\begin{aligned} & +5.1 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & 5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} 8 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2.0 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} 12 \mathrm{~A} \\ 4 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 4 \mathrm{~A} \end{gathered}$	$6.2 \pm 0.6 \mathrm{~V}$	50 mV 120 mV 120 mV 50 mV	$\begin{gathered} 2 \% \\ +10 \%,-5 \% \text { (D) } \\ 3 \% \\ 2 \% \end{gathered}$
GLC75P	GLM75P	G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{~V} \\ & +24 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 0 \mathrm{~A} \\ 0 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{array}{r} 8 \mathrm{~A} \\ 4 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2.5 \mathrm{~A} \end{array}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 4 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 12 \mathrm{~A} \\ 4.5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 4 \mathrm{~A} \\ \hline \end{gathered}$	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{gathered} 50 \mathrm{mV} \\ 240 \mathrm{mv} \\ 120 \mathrm{mV} \\ 120 \mathrm{mV} \end{gathered}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \% \text { (D) } \\ 3 \% \\ 2 \% \end{gathered}$

* Add " G " suffix to part number for RoHS compliant model. Contact factory for availability.
A. Rating with unrestricted convection cooling. Total power not to exceed 75 W .
B. Rating with 26 cfm forced-air cooling. Total power not to exceed 110 W .
C. Floating fourth output can be referenced as either positive or negative. Connect pin 12 to Return to provide a positive voltage at Pin 13. Connect pin 13 to Return to provide a negative voltage at Pin 12.
D. To maintain these regulations conditions, the +5 V current must be at least $1 / 5$ of V 2 and not greater than 5 times the V 2 current. Requires +5 V to be adjusted to within 1% with at least a 1 A load to maintain regulation on this output.

GLC75/GLM75 - MULTIPLE OUTPUT - MECHANICAL SPECIFICATIONS

ENVIRONMENTAL SPECIFICATIONS	OPERATING	NON-OPERATING
Temperature (A)	0 to 50°	-40 to $+85^{\circ} \mathrm{C}$
Humidity (A)	0 to $95 \% \mathrm{RH}$	0 to $95 \% \mathrm{RH}$
Shock (B)	$20 \mathrm{~g}_{\mathrm{pk}}$	$40 \mathrm{~g}_{\mathrm{pk}}$
Altitude	-500 to $10,000 \mathrm{ft}$	-500 to $40,000 \mathrm{ft}$
Vibration (C)	$1.5 \mathrm{~g}_{\mathrm{rms}} 0.003 \mathrm{~g}^{2} / \mathrm{Hz}$	$5 \mathrm{~g}_{\mathrm{rm}} 0.026 \mathrm{~g}^{2} / \mathrm{Hz}$

A. Units should be allowed to warm up/operate under non-condensing conditions before application of power. Derate output current and total output power by 2.5% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$.
B. Shock testing-half-sinusoidal, $10 \pm 3 \mathrm{~ms}$ duration, \pm direction, 3 orthogonal axes, total 6 shocks.
C. Random vibration-10 to $2000 \mathrm{~Hz}, 6 \mathrm{~dB} /$ octave roll-off from 350 to $2000 \mathrm{~Hz}, 3$ orthogonal axes. Tested for 10 min ./axis operating and 1 hr./axis non-operating.

SL Power Electronics, Inc., 6050 King Drive, Bldg. A, Ventura, CA 93003, USA. Phone:(805) 4864565 Fax:(805) 4878911 www.slpower.com Rev. 9-23-10.
Data Sheet $\odot 2010$ SL Power Electronics, Inc. The information and specifications contained in this data sheet are believed to be correct at time of publication.
However, SL Power accepts no responsibility for consequences arising from reproduction errors or inaccuracies. Specifications are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Power Supplies category:
Click to view products by SL Power manufacturer:
Other Similar products are found below :
70841011 73-551-0005 73-551-0048 PS3E-B12F PS3E-E12F AAD600S-4-OP R22095 KD0204 9021 LDIN100150 LPM000-BBAR-01 LPX17S-C EVS57-10R6/R FP80 FRV7000G 22929 PS3E-F12F CQM1IA121 40370121900 VI-PU22-EXX 40370121910 LDIN5075 LPM615-CHAS LPX140-C 09-160CFG 70841025 VPX3000-CBL-DC LPM000-BBAR-05 LPM000-BBAR-08 LPM124-OUTA1-48 LPM000-BBAR-07 LPM109-OUTA1-10 LPM616-CHAS 08-30466-1055G 08-30466-2175G 08-30466-2125G DMB-EWG TVQF-121918S 6504-226-2101 CQM1IPS01 SP-300-5 CQM1-IPS02 VI-MUL-ES 22829 08-30466-0065G VI-RU031-EWWX 08-30466-0028G VI-LUL-EU EP3000AC48INZ VP-C2104853

