GLOBAL PERFORMANCE SWITCHERS

FEATURES:

- Wide-range ac input 85-264 Vac

- 2-year warranty
- Conducted EMI complies with FCC Class B and CISPR 22 Class B (Commercial models) and CISPR 11 Class B (Medical models)
- Commercial Approved to UL1950, IEC950 and CSA22.2-234 L3
- Medical Approved to UL2601-1, IEC601-1 and CSA22.2 No. 601
- Complies with EN61000-3-2 Class A
- Single and multiple outputs
- (\in marked to LVD
- RoHS Compliant Model Available (G suffix)

SPECIFICATIONS

Ac Input
$85-264 \mathrm{Vac}, 47-63 \mathrm{~Hz}$ single phase.

Input Current

Maximum input current at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$ with full rated output load: 1.7 A

Hold-Up Time

20 ms minimum from loss of ac input at full load, nominal line (115 Vac).

Output Power

55 W continuous, 70 W peak. Peak ratings are for 60 s maximum duration, 10% duty cycle. During peak load condition, output regulation may exceed total regulation limits.

Overload Protection

Fully protected against short circuit and output overload. Short circuit protection is cycling type power limit on outputs $1 \& 2$; foldback type on outputs 3 \& 4. Recovery after fault is automatic. See output ratings chart for additional notes or conditions. Factory set to begin power limiting at approximately 75 W .

Overvoltage Protection
Main outputs: 124\% + 12\%

Efficiency

70% at full rated load, nominal input voltage, depending on model and load distribution.

Input Protection

Internal ac fuse provided. Designed to blow only if a catastrophic failure occurs in the unit.

Inrush Current
Inrush is limited by internal thermistors. Inrush at 240 Vac under cold start conditions will not exceed 34 A .
Temperature Coefficient
$0.03 \% /{ }^{\circ} \mathrm{C}$ typical on all outputs.

Environmental

Designed for 0 to $50^{\circ} \mathrm{C}$ operation at full rated output power; derate output current and total output power by 2.5% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$. See Environmental and Packaging Specifications on next page.

Output Noise

$0.5 \% \mathrm{rms}, 1 \% \mathrm{pk}-\mathrm{pk}, 20 \mathrm{MHz}$ bandwidth, differential mode. Measured with noise probe directly across output terminals of the power supply.

Transient Response
Main output-500 μ s typical response time for return to within 0.5% of final value for a 50% load step change. $\Delta \mathrm{i} / \Delta \mathrm{t}<0.2 \mathrm{~A} / \mu \mathrm{s}$. Maximum voltage deviation is 3.5%. Startup/shutdown overshoot less than 3\%.

Voltage Adjustment
Built-in potentiometer adjusts voltage $\pm 5 \%$ on outputs $1 \& 2$.
EMI/EMC Compliance
All models include built-in EMI filtering to meet the following emissions requirements:

EMI SPECIFICATIONS
Conducted Emissions GPC55 Static Conducted Emissions GPM55
Static Discharge RF Field Susceptibility Fast Transients/Bursts Surge Susceptibility Line Frequency Harmonics

COMPLIANCE LEVEL

EN55022 Class B; FCC Class B
EN55011 Class B; FCC Class B
EN61000-4-2, 6 kV contact, 8 kV air
EN61000-4-3, 3 V/meter
EN61000-4-4, 2 kV, 5 kHz
EN61000-4-5, 1 kV diff., 2 kV com.
EN61000-3-2 Class A

Commercial Leakage Current
 0.7 mA 254 Vac @ 60 Hz input.

Commercial Safety
Approved to UL1950, CSA22.2 No. 234 Level 3, IEC950 and EN60950. UL file \#E135803 commercial; CSA \#LR46516 all models. All dc outputs are SELV under normal and single fault conditions.
Medical Leakage Current
$35 \mu \mathrm{~A} 254 \mathrm{Vac}$ @ 60 Hz input.

[^0]| Commercial Model | Medical Model | Output No. | Output | Output Minimum | Output Maximun | Output Peak | Noise P-P | Total Regulation (A) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GPC55A | GPM55A | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & +5 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -12 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0.7 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$ | $\begin{gathered} 8 \mathrm{~A} \\ 5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \end{gathered}$ | $\begin{gathered} 50 \mathrm{mV} \\ 120 \mathrm{mV} \\ 120 \mathrm{mV} \\ 120 \mathrm{mV} \end{gathered}$ | $\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$ |
| GPC55B | GPM55B | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & +5 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -5 \mathrm{~V} \\ & -12 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0.7 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$ | $\begin{array}{r} 8 \mathrm{~A} \\ 5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \end{array}$ | $\begin{gathered} 50 \mathrm{mV} \\ 120 \mathrm{mV} \\ 50 \mathrm{mV} \\ 120 \mathrm{mV} \end{gathered}$ | $\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$ |
| GPC55C | GPM55C | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & +5 \mathrm{~V} \\ & +15 \mathrm{~V} \\ & -5 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0.7 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 8 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 1.2 \mathrm{~A} \\ & 1.2 \mathrm{~A} \end{aligned}$ | $\begin{gathered} 50 \mathrm{mV} \\ 150 \mathrm{mV} \\ 50 \mathrm{mV} \\ 150 \mathrm{mV} \end{gathered}$ | $\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$ |
| GPC55D | GPM55D | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & +5 \mathrm{~V} \\ & +24 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -12 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0.7 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \end{aligned}$ | $\begin{gathered} 6 \mathrm{~A} \\ 1.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 1 \mathrm{~A} \end{gathered}$ | $\begin{array}{r} 8 \mathrm{~A} \\ 5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 1.2 \mathrm{~A} \end{array}$ | $\begin{gathered} 50 \mathrm{mV} \\ 240 \mathrm{mV} \\ 120 \mathrm{mV} \\ 120 \mathrm{mV} \end{gathered}$ | $\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$ |
| GPC55E | GPM55E | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & +5 \mathrm{~V} \\ & +24 \mathrm{~V} \\ & +15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0.7 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \end{aligned}$ | $\begin{gathered} 6 \mathrm{~A} \\ 1.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 1 \mathrm{~A} \end{gathered}$ | $\begin{aligned} & 8 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 1.2 \mathrm{~A} \\ & 1.2 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 50 \mathrm{mV} \\ & 120 \mathrm{mV} \\ & 150 \mathrm{mV} \\ & 150 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$ |
| GPC55F | GPM55F | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & +5 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & +15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 0.7 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \\ & 0 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$ | $\begin{gathered} 8 \mathrm{~A} \\ 5 \mathrm{~A} \\ 1.2 \mathrm{~A} \\ 11 \end{gathered}$ | $\begin{gathered} 50 \mathrm{mV} \\ 120 \mathrm{mV} \\ 150 \mathrm{mV} \\ 150 \mathrm{mV} \end{gathered}$ | $\begin{aligned} & 2 \% \\ & 2 \% \\ & 3 \% \\ & 3 \% \end{aligned}$ |
| GPC55-5 | GPM55-5 | 1 | 5 V | 0 A | 11 A | 14 A | 50 mV | 2\% |
| GPC55-12 | GPM55-12 | 1 | 12 V | 0 A | 4.7 A | 5.8 A | 120 mV | 2\% |
| GPC55-15 | GPM55-15 | 1 | 15 V | 0 A | 3.7 A | 4.7 A | 150 mV | 2\% |
| GPC55-24 | GPM55-24 | 1 | 24 V | 0 A | 2.3 A | 2.9 A | 240 mV | 2\% |
| GPC55-28 | GPM55-28 | 1 | 28 V | 0 A | 2.0 A | 2.4 A | 280 mV | 2\% |
| GPC55-48 | | 1 | 48 V | 0 A | 1.5 A | 1.5 A | 480 mV | 2\% |

A. Total regulation is defined as the maximum deviation from the nominal voltage for all steady-state conditions of initial voltage setting, input line voltage and output load. B. Add " G " suffix to model to indicate RoHS compliant moel.

GPC55/GPM55 MECHANICAL SPECIFICATIONS

ENVIRONMENTAL SPECIFICATIONS	OPERATING	NON-OPERATING
Temperature (A)	See individual Specs	-40 to $+85^{\circ} \mathrm{C}$
Humidity (A)	0 to $95 \% \mathrm{RH}$	0 to $95 \% \mathrm{RH}$
Shock (B)	$20 \mathrm{~g}_{\mathrm{pk}}$	$40 \mathrm{~g}_{\mathrm{pk}}$
Altitude	-500 to $10,000 \mathrm{ft}$	-500 to $40,000 \mathrm{ft}$
Vibration (C)	$1.5 \mathrm{~g}_{\mathrm{rms}} .0 .003 \mathrm{~g}^{2} / \mathrm{Hz}$	$5 \mathrm{~g}_{\mathrm{rms}} 0.026 \mathrm{~g}^{2} / \mathrm{Hz}$

A. Units should be allowed to warm up/operate under non-condensing conditions before application of power.
B. Shock testing—half-sinusoidal, $10 \pm 3 \mathrm{~ms}$ duration, \pm direction, 3 orthogonal axes, total 6 shocks.
C. Random vibration-10 to $2000 \mathrm{~Hz}, 6 \mathrm{~dB} /$ octave roll-off from 350 to $2000 \mathrm{~Hz}, 3$ orthogonal axes. Tested for 10 min ./axis operating and 1 hr./axis non-operating.

SL Power Electronics Corp.. 6050 King Drive, Bldg. A, Ventura, CA 93003, USA. Phone:(805) 4864565 Fax:(805) 4878911 www.slpower.com Rev. 5/08.
Data Sheet © 2008 SL Power Electronics Corp. The information and specifications contained in this data sheet are believed to be correct at time of publication.
However, Condor accepts no responsibility for consequences arising from reproduction errors or inaccuracies. Specifications are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Power Supplies category:
Click to view products by SL Power manufacturer:
Other Similar products are found below :
70841011 73-551-0005 73-551-0048 PS3E-B12F PS3E-E12F AAD600S-4-OP R22095 KD0204 9021 LDIN100150 LPM000-BBAR-01 LPX17S-C EVS57-10R6/R FP80 FRV7000G 22929 PS3E-F12F CQM1IA121 40370121900 VI-PU22-EXX 40370121910 LDIN5075 LPM615-CHAS LPX140-C 09-160CFG 70841025 VPX3000-CBL-DC LPM000-BBAR-05 LPM000-BBAR-08 LPM124-OUTA1-48 LPM000-BBAR-07 LPM109-OUTA1-10 LPM616-CHAS 08-30466-1055G 08-30466-2175G 08-30466-2125G DMB-EWG TVQF-121918S 6504-226-2101 CQM1IPS01 SP-300-5 CQM1-IPS02 VI-MUL-ES 22829 08-30466-0065G VI-RU031-EWWX 08-30466-0028G VI-LUL-EU EP3000AC48INZ VP-C2104853

[^0]: Medical Safety
 Approved to UL2601, CSA22.2 No. 601 Level 3 and IEC601. UL file E116994; CSA \#LR46516. The output(s) are intended for safety earthed Signal Output and Intermediate Circuits only. The output(s) are not acceptable for patient connection without additional isolation. All dc outputs are SELV under normal and single fault conditions.

