SPECIFICATION FOR APPROVAL

Description <u>NTC THERMISTOR</u>

Type MF72-1-6R8M

Drawn

Checked

Approve _____

1. Description

The specification is applicable to MF72 NTC thermistors for inrush current depressing.

2. Construct and dimension

2.1 Construct

The coating of MF72 is black insulating resin.

2.2 Outline drawing. Outline drawing and dimension(Unit:mm).

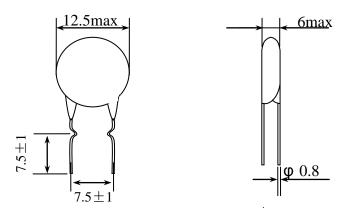


figure 1 Outline drawing and dimension

3. Electrical Parameters

N⁰	Name of parameters	Method of testing	Specification
1	Zero-power resistance R_{25} (Ω)	25±0. 1℃ Temperature: 25℃±0.1℃. Measurements shall be made without self-heating of the devices.	6.8±20%
2	B-value (K)	$B=(lnR_1/R_2) / (1/T_1-1/T_2)$ $T_1= (25+273. 15) K$ $T_2= (85+273. 15) K$ $R_1-T_1 \text{ Resistance at } 25^{\circ}\text{C}$ $R_2-T_2 \text{ Resistance at } 85^{\circ}\text{C}$	≥2500
3	Dissipation factor δ (m₩/℃)	In stationary air of $25^{\circ}C \pm 2^{\circ}C$	≈ 17
4	Thermal time constant T (s)	In stationary air of $25^{\circ}C \pm 2^{\circ}C$	≈43
5	Maximum current Imax(A)	In stationary air of $25^{\circ}C \pm 2^{\circ}C$ 3A current	3
6	Residual resistance at Imax(Ω)	is continuously applied to the thermistor - (see figure 2)	≤0.25
7	Insulation resistance (MΩ)	In the trough of a 90° metallic V-block measure with a direct voltage of $100 \pm 15V$	≥500

8	Voltage proof (V)	In the trough of a 90° metallic V-block Frequency: $40 \sim 60$ Hz Time: $60s \pm 5s$	no breakdown or flashover
9	Maximum permissible capacitance C _{max} (µF)	In stationary air of $25^{\circ}C \pm 2^{\circ}C$, AC 220V (see figure 3)	220

4. Environmental Performance

Nº	Item	Test method and condition	Specification
1	Rapid change of temperature	The thermistor shall be subjected to the procedure of test Na of IEC 60068-2-14 T_A =-55°C T_B =+155°C t_1 =30min The number of cycles is 5	No visible damage ΔR/R ≤15%
2	Damp heat (cyclic)	The thermistor shall be subjected to the procedure of test Db of IEC 60068-2-30 The number of cycles is 1	$ \Delta R/R \leq 10\%$ no breakdown or flashover Insulation resistance \geq $100M\Omega$
3	Storage in damp heat, steady state	The thermistor shall be subjected to the procedure of test Ca of IEC 60068-2-3 Temperature: $40\pm2^{\circ}$ C Humidity: (93 ± 3) %RH Time: 100h	visible damage $ \Delta R/R \leq 10\%$ no breakdown or flashover Insulation resistance \geq $100M\Omega$

5. Mechanical Performance

N⁰	Item	Test method and condition	Specification
1	Resistance to soldering heat	The thermistor shall be subjected to the procedure of method 1A of test Tb of IEC 60068-2-20 Temperature of the solder bath: 260 ± 5 °C Immersion time: $5\pm1s$	No visible damage ∆ R/R ≤5%
2	Robustness of terminations	The thermistor shall be subjected to the procedure of test U of IEC 60068-2-21 Test Ua ₁ : tensile force—10N Test Ub: bending force—5N	No visible damage ∆ R/R ≤5%
3	Vibration	The thermistor shall be subjected to the procedure of test Fc of IEC 60068-2-6 Mounting mean: by body of resistance Frequency: $10 \sim 500$ Hz Swing: 0.75mm or 100 m/s ² Time: 6h	No visible damage ∆ R/R ≤5%

4	Bump	The thermistor shall be subjected to the procedure of test Eb of IEC 60068-2-29 Mounting mean: by body of resistance acceleration: 250 m/s ² time of pulse: 6ms time of bump: 4000	No visible damage Δ R/R ≤5%
---	------	---	------------------------------------

6. Endurance test

No	Item	Test method and condition	Specification
1	Endurance at room temperature with applied continuous maximum current	Current: 3A Time: 1000h	No visible damage Δ R/R ≤20%
2	Storage in dry heat	Temperature: +155°C Time: 1000h Storage at upper category temperature	No visible damage Δ R/R ≤20%

7. Maximum current I_{max} test circuit

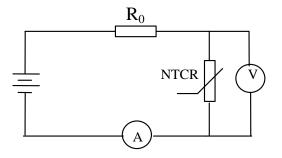


figure 2 Maximum current I_{max} test circuit

8. Maximum capacitance C_{max} test circuit

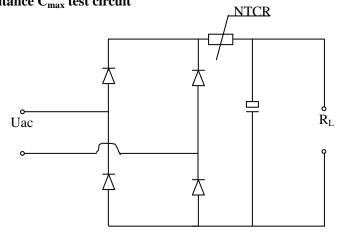


figure 3 Maximum capacitance C_{max} test circuit

9. Character curve

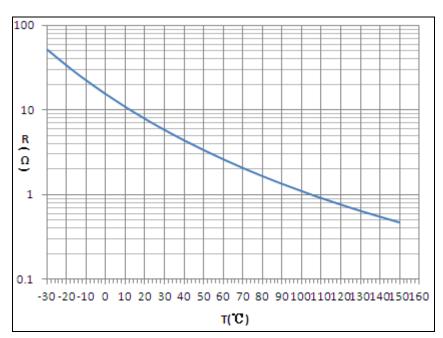
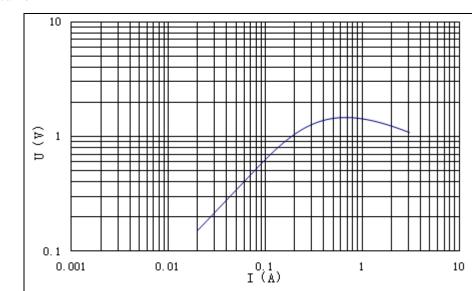
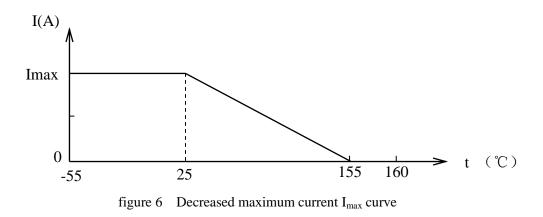
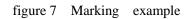



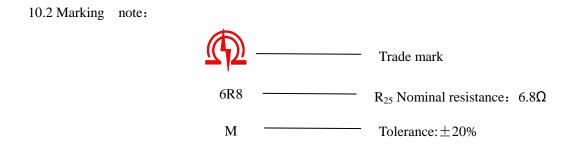
figure 4 R—T curve



9.2 V—I curve

figure 5: V—I curve


P5/7


9.3 Decreased maximum current $I_{\text{max}} \, \text{curve}$

- **10.** Marking example
- 10.1 Marking example

11. Approvals

11.1 UL recognized

file #: E184918

11.2 VDE authentication

file #: 40020558

file #: CQC09001034906

12. Note

12.1 MF7 series NTCR is designed for special usage. So it should only be used in specified status.

12.2 MF7 series NTCR should be used in specified environment. Otherwise it may cause the performance drop, even breakdown the product.

(1) Working current should not be over the specified parameter.

- (2) Please avoid to use the product in caustic, volatile, flammable ambient and places near water, salt, oil. It is also prohibited to use the product under vacuum, low air pressure, high air pressure condition.
- 12.3 MF72 Series NTCR should be stored in the following condition:

Temp. -10° C $\sim +40^{\circ}$ C, Relative humidity <80%

And it should avoid sudden change of humidity, direct sunshine, caustic atmosphere, dust environment and mechanical destroy.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thermistors - NTC category:

Click to view products by SR Passives manufacturer:

Other Similar products are found below :

 B57620C5103J062
 238164043103
 238164063109
 238164063222
 30054-4
 B57621C0224J062
 B57621C333J62
 103AT-5-1P-FT

 B57364S121M
 NTCS-10-3R-4
 MF11-473J-B4250
 B57164K0102K000
 B57164K0153K000
 B57164K0223K000
 B57164K0472K000

 B57236S0509M
 B57237S0150M
 B57237S0479M
 B57237S0509M
 MF11-332J-B4050
 MF11-682J-B4250
 MF11-683J

 B4250
 MF72-1D20M
 01C1002JP
 01C1501JP
 01M1002FF
 01M2251SFC3
 01M3002FP
 01M6001FP
 02C1001JF
 02C5000JF
 04T1003FF

 04T5002FF
 04T1003FP
 08M3002FP
 09M1002FP
 NXRT15WF104FA1B030
 01T1002JF
 01C1074U-3-0
 GC1396V

 3-200
 09M1002FF
 EC95H303W
 EC95G503W
 NCP15WM224E03RC
 NCP15WM474J03RC
 NCP15XH103E03RC
 NCP15XQ102J03RC