•

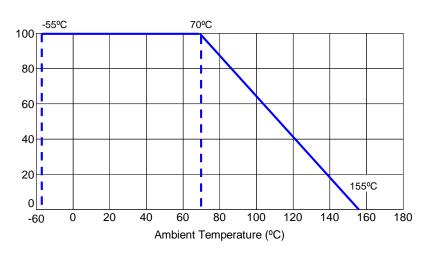
•

Stackpole Electronics, Inc.

Metal Film Melf Resistor

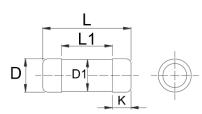
Resistive Product Solutions

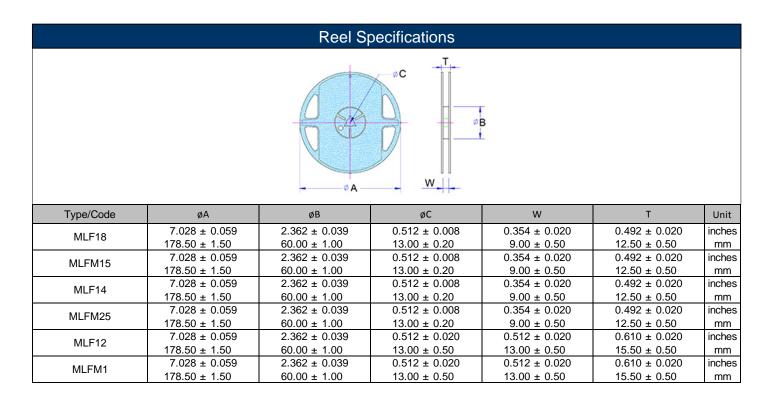
Features:


- Thin Film Technology for precision and stability
- Excellent power to size ratio
- Exhibits good pulse power characteristics
- RoHS compliant, lead-free and halogen-free

Electrical Specifications									
Type/Code Package Size		Power Rating (Watts)	(Watts) Working		Resistance Temperature				
		@ 70ºC	Voltage ⁽¹⁾	Voltage	Coefficient	0.1%	0.5%	1%	5%
					±15 ppm/ºC		100 - 56K	r	-
MLF18	0102	0.125W	150V	300V	±25 ppm/ºC	100 - 82K	49.9 - 200K	49.9 - 390K	-
MEI 10	0102	0.12011	1001	0001	±50 ppm/⁰C	- 40 - 1M			
					±100 ppm/ºC		- 40 - 1M		· 1M
					±15 ppm/ºC		100 - 56K		-
MLFM15	0102	0.2W	200V	400V	±25 ppm/ºC	100 - 82K	49.9 - 200K	49.9 - 390K	-
	0102	0.200		400 v	±50 ppm/⁰C	-		40 - 1M	
					±100 ppm/ºC		- 40 - 1M		· 1M
					±10 ppm/ºC	10 - 20K			
					±15 ppm/ºC	10 - 300K			
	0204	0.25W	200V	400V	±25 ppm/ºC	10 - 1M		4.02 - 4.7M	
MLF14					±50 ppm/ºC	10 - 1M	1 - 1M	0.2 -	10M
					±100 ppm/ºC		-		0.1 - 10M
		Jumper: 2A			-	0Ω(<15mΩ)			
			200V		±15 ppm/°C	10 - 100K			
					±25 ppm/°C	10 - 1M		4.02 - 1M	
MLFM25	0204 0.4			400V	±50 ppm/°C	10 - 1M	1 - 1M	0.2	- 1M
					±100 ppm/°C	-	-		- 1M
					±10 ppm/°C	10 - 20K			
	0207	0207 0.5W	300V	600V	±15 ppm/°C	10 - 300K			
					±25 ppm/°C	10 - 1M		4.02 - 4.7M	
MLF12					±50 ppm/°C	10 - 1M	1 - 1M		10M
					±100 ppm/°C	-		0.1 - 10M	
		Jumper: 4A			-	0Ω(<1			
MLFM1	0207		350V		±15 ppm/°C		49.9 - 100K		
				700∨	±25 ppm/°C	10 -	10 - 1M 4.02 - 1		- 1M
					±50 ppm/°C	10 - 1M	1 - 1M		10M
							-		
					±100 ppm/ºC		-	0.1 -	10M

Note: ⁽¹⁾ Lesser of $\sqrt{P^*R}$ or maximum working voltage


Power Derating Curve:


Stackpole Electronics, Inc. Resistive Product Solutions

Metal Film Melf Resistor

Mechanical Specifications

Type/Code	Weight (g) (1000 pieces)	L Body Length	L1 (min.) Inner Body Length	D Body Diameter	D1 Middle Body Dia.	K Termination	Unit
MLF18	7.7	0.087 ± 0.004 2.20 ± 0.10	0.043 1.10	0.043 ± 0.004 1.10 ± 0.10	0.043 +0/-0.006 1.10 +0/-0.15	0.018 ± 0.002 0.45 ± 0.05	inches mm
MLFM15	7.7	0.087 ± 0.004 2.20 ± 0.10	0.043 1.10	0.043 ± 0.004 1.10 ± 0.10	0.043 +0/-0.006 1.10 +0/-0.15	0.018 ± 0.002 0.45 ± 0.05	inches mm
MLF14	18.7	0.138 ± 0.008 3.50 ± 0.20	0.138 3.50	0.055 ± 0.006 1.40 ± 0.15	0.055 +0/-0.008 1.40 +0/-0.20	0.031 ± 0.004 0.80 ± 0.10	inches mm
MLFM25	18.7	0.138 ± 0.008 3.50 ± 0.20	0.138 3.50	0.055 ± 0.006 1.40 ± 0.15	0.055 +0/-0.008 1.40 +0/-0.20	0.031 ± 0.004 0.80 ± 0.10	inches mm
MLF12	80.9	0.232 ± 0.008 5.90 ± 0.20	0.232 5.90	0.087 ± 0.008 2.20 ± 0.20	0.087 +0/-0.008 2.20 +0/-0.20	0.051 ± 0.004 1.30 ± 0.10	inches mm
MLFM1	80.9	0.232 ± 0.008 5.90 ± 0.20	0.232 5.90	0.087 ± 0.008 2.20 ± 0.20	0.087 +0/-0.008 2.20 +0/-0.20	0.051 ± 0.004 1.30 ± 0.10	inches mm

Stackpole Electronics, Inc. Resistive Product Solutions

Metal Film Melf Resistor

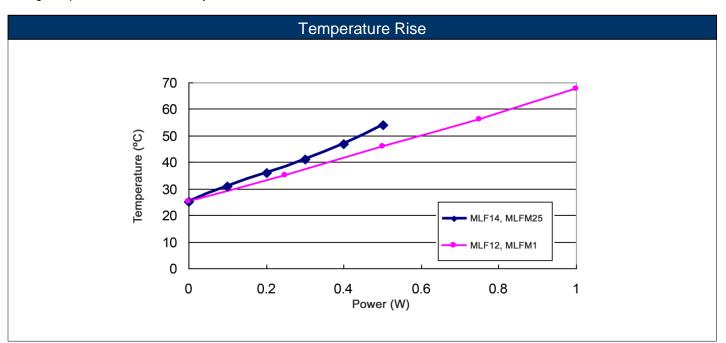
	Р	ackaging Spe	cifications - Ei	mbossed Plas	tic Tape		
		Top Tape	$ \begin{array}{c} $	P ₀ Direction of unre	ψ ψ ψ ψ D_1 ψ		
Type/Code	A	В	W	E	F	P0	Unit
MLF18	0.051 ± 0.004	0.094 ± 0.004	0.315 ± 0.004	0.069 ± 0.004	0.138 ± 0.002	0.157 ± 0.004	inches
	1.30 ± 0.10	2.40 ± 0.10	8.00 ± 0.10	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10	mm
MLFM15	0.051 ± 0.004 1.30 ± 0.10	0.094 ± 0.004 2.40 ± 0.10	0.315 ± 0.004 8.00 ± 0.10	0.069 ± 0.004 1.75 ± 0.10	0.138 ± 0.002 3.50 ± 0.05	0.157 ± 0.004 4.00 ± 0.10	inches mm
	0.061 ± 0.004	0.144 ± 0.004	0.315 ± 0.004	0.069 ± 0.004	0.138 ± 0.002	0.157 ± 0.004	inches
MLF14	1.55 ± 0.10	3.65 ± 0.10	8.00 ± 0.10	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10	mm
MLFM25	0.061 ± 0.004	0.144 ± 0.004	0.315 ± 0.004	0.069 ± 0.004	0.138 ± 0.002	0.157 ± 0.004	inches
IVILFIVI25	1.55 ± 0.10	3.65 ± 0.10	8.00 ± 0.10	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10	mm
MLF12	0.094 ± 0.004	0.242 ± 0.004	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004	inches
	2.40 ± 0.10	6.15 ± 0.10	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10	mm
MLFM1	0.094 ± 0.004	0.242 ± 0.004	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004	inches
	2.40 ± 0.10	6.15 ± 0.10	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10	mm
Type/Code	P1	P2	D0	D1	T	Unit	
MLF18	0.157 ± 0.004	0.079 ± 0.002	0.059 ± 0.004	0.035 min.	0.059 ± 0.004	inches	
	4.00 ± 0.10	2.00 ± 0.05	1.50 ± 0.10	0.90 min.	1.50 ± 0.10	mm	
MLFM15	0.157 ± 0.004	0.079 ± 0.002	0.059 ± 0.004	0.035 min.	0.059 ± 0.004	inches	
-	4.00 ± 0.10	2.00 ± 0.05	1.50 ± 0.10	0.90 min.	1.50 ± 0.10	mm	
MLF14	0.157 ± 0.004	0.079 ± 0.002	0.059 ± 0.004	0.035 min.	0.071 ± 0.004	inches	
	4.00 ± 0.10	2.00 ± 0.05	1.50 ± 0.10	0.90 min. 0.035 min.	1.80 ± 0.10 0.071 ± 0.004	mm	
MLFM25	0.157 ± 0.004 4.00 ± 0.10	0.079 ± 0.002 2.00 ± 0.05	0.059 ± 0.004 1.50 ± 0.10	0.035 min. 0.90 min.	0.071 ± 0.004 1.80 ± 0.10	inches mm	
	4.00 ± 0.10 0.157 ± 0.004	2.00 ± 0.03 0.079 ± 0.002	0.059 ± 0.004	0.055 min.	0.106 ± 0.004	inches	
MLF12	4.00 ± 0.10	2.00 ± 0.05	1.50 ± 0.10	1.40 min.	2.70 ± 0.100	mm	
	0.157 ± 0.004	0.079 ± 0.002	0.059 ± 0.004	0.055 min.	0.106 ± 0.004	inches	
MLFM1	4.00 ± 0.10	2.00 ± 0.05	1.50 ± 0.10	1.40 min.	2.70 ± 0.100	mm	
		2.00 2 0.00					

Recommended Pad Layout

Type/Code	А	В	С	Unit			
MLF18	0.039	0.031	0.059	inches			
MLF 10	1.00	0.80	1.50	mm			
MLFM15	0.039	0.031	0.059	inches			
	1.00	0.80	1.50	mm			
MLF14	0.063	0.047	0.063	inches			
	1.60	1.20	1.60	mm			
MLFM25	0.063	0.047	0.063	inches			
IVILFIVI20	1.60	1.20	1.60	mm			
MLF12	0.118	0.067	0.094	inches			
	3.00	1.70	2.40	mm			
MLFM1	0.118	0.067	0.094	inches			
	3.00	1.70	2.40	mm			

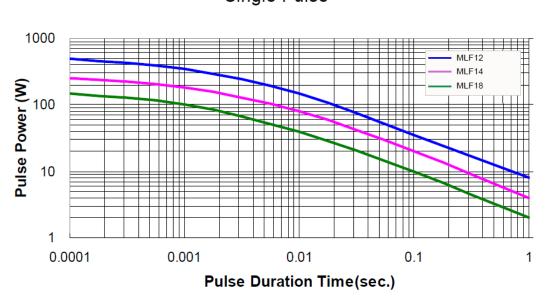
Rev Date: 03/28/2019

This specification may be changed at any time without prior notice Please confirm technical specifications before you order and/or use.

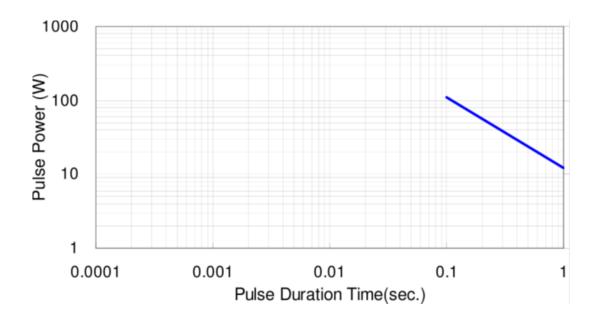

Stackpole Electronics, Inc. Resistive Product Solutions

Metal Film Melf Resistor

Performance Characteristics							
Test	Test Method	Test Condition	Test Specification				
Temperature Coefficient of Resistance (T.C.R.)	JIS-C-5201-1 4.8 IEC-60115-1 4.8	-55°C ~ +125°C, 25°C is the reference temperature	As specified				
Short Time Overload	JIS-C-5201-1 4.13 IEC-60115-1 4.13	RCWV*2.5 or max. overload voltage whichever is lower for 5 seconds	0204/0207: ± (0.15% + 0.05Ω) 0102: ± (0.5% + 0.05Ω)				
Insulation Resistance	JIS-C-5201-1 4.6 IEC-60115-1 4.6	Max. overload voltage for 1 minute	≥10G				
Endurance	JIS-C-5201-1 4.25 IEC-60115-1 4.25.1	$70 \pm 2^{\circ}$ C, RCWV for 1000 hours with 1.5 hour "ON" and 0.5 hour "OFF"	0204/0207: ± (0.15% + 0.05Ω) 0102: ± (0.5% + 0.05Ω)				
Damp Heat with Load	JIS-C-5201-1 4.24 IEC-60115-1 4.24	40 ± 2℃, 90~95% R.H., RCWV for 1000 hours with 1.5 hour "ON" and 0.5 hour "OFF"	0204/0207: ± (1.0% + 0.05Ω) 0102: ± (1.5% + 0.05Ω)				
Dry Heat	JIS-C-5201-1 4.23 IEC-60115-1 4.23.2	at +155°C for 1000 hours	0204/0207: ± (1.0% + 0.05Ω 0102: ± (1.5% + 0.05Ω)				
Bending Strength	JIS-C-5201-1 4.33 IEC-60115-1 4.33	Bending once for 5 seconds with 2mm	± (0.5% + 0.05Ω)				
Solderability	JIS-C-5201-1 4.17 IEC-60115-1 4.17	245 ± 5°C for 3 seconds	95% min. coverage				
Resistance to Soldering Heat	JIS-C-5201-1 4.18 IEC-60115-1 4.18	260 ± 5°C for 10 seconds	± (0.5% + 0.05Ω)				
Voltage Proof	JIS-C-5201-1 4.7 IEC-60115-1 4.7	1.42 times max. operating voltage for 1 minute	No breakdown or flashover				
Leaching	JIS-C-5201-1 4.18 IEC-60068-2-58 8.2.1	260 ± 5°C for 30 seconds	Individual leacing area ≤ 5% Total Leaching area ≤ 10%				
Rapid Change of Temperature	JIS-C-5201-1 4.19 IEC-60115-1 4.19	-55°C to +155°C, 5 cycles	± (0.5% + 0.05Ω)				

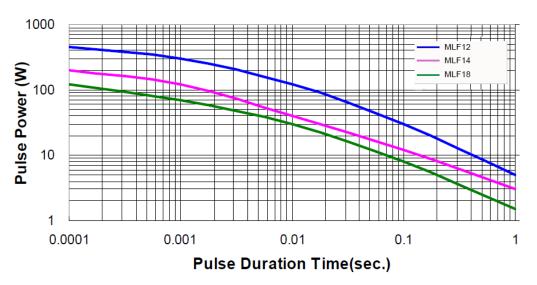

RCWV (rated continuous working voltage) = $v(P^*R)$ or max. operating voltage whichever is lower.

Storage temperature: 25 ± 3°C, humidity < 80% R.H.



Pulse withstanding capacity

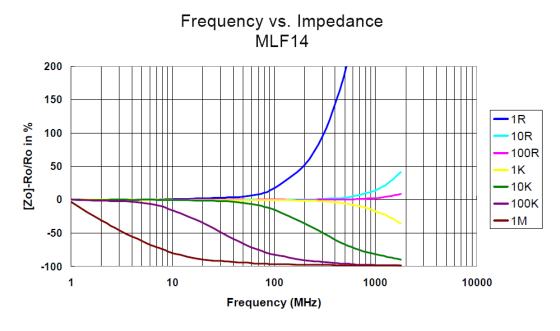
The single impulse graph is the result of 50 impulses of rectangular shape applied at one-minute intervals. The limit of acceptance was a shift in resistance of less than 1% from the initial value. The power applied was subject to the restrictions of the maximum permissible impulse voltage graph shown.


MLFM1 Single Pulse (1 Kohm)

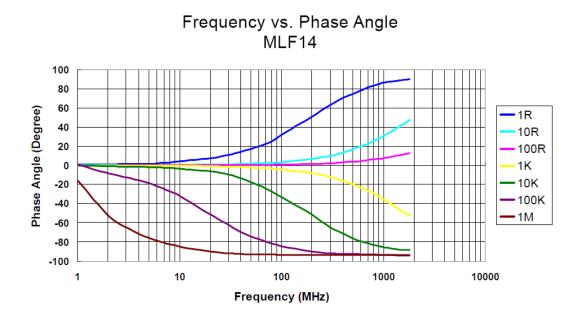
single Pulse

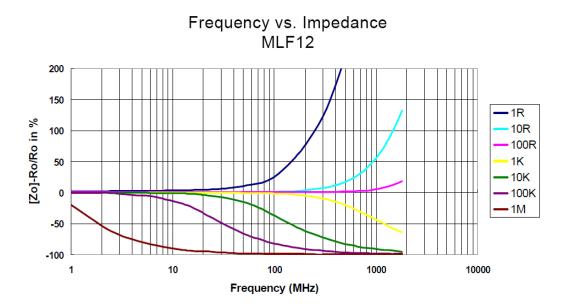
Continuous Pulse

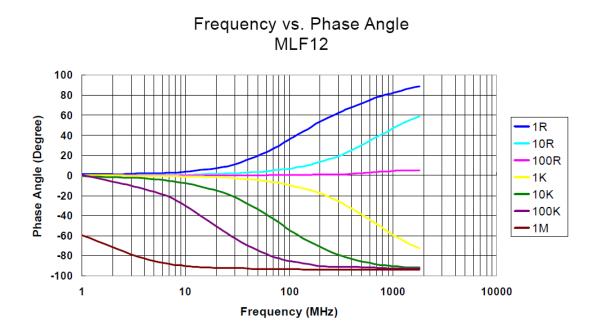
The continuous load graph was obtained by applying repetitive rectangular pulses where the pulse period was adjusted so that the average power dissipated in the resistor was equal to its rated power at 70°C. Again the limit of acceptance was a shift in resistance of less than 1% from the initial value.



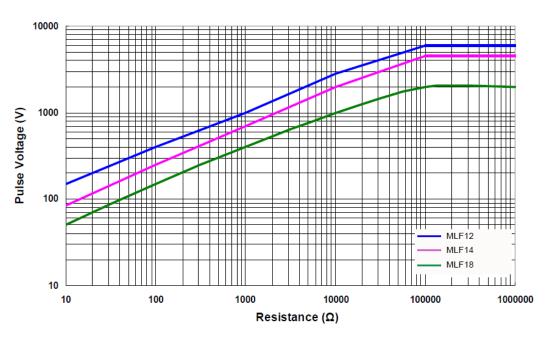
Continuous Pulse


Frequency behavior

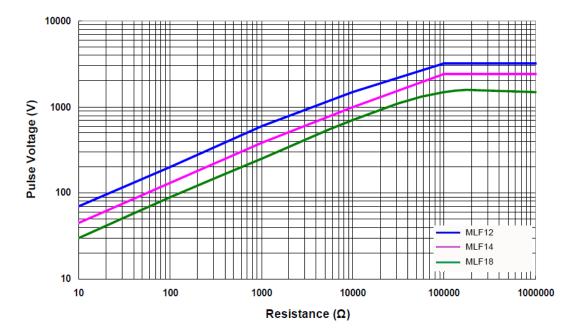

Resistors are designed to function according to Ohmic laws. This is basically true of resistors for frequencies up to 100 kHz. At higher frequencies, there is an additional contribution to the impedance by an ideal resistor switched in series with a coil and both switched parallel to a capacitor. The values of the capacitance and inductance are mainly determined by the dimensions of the terminations and the conductive path length.


The environment surrounding components has a large influence on the behavior of the component on the printed-circuit board.

MLF/MLFM Series Metal Film Melf Resistor



Lightning Surge


Resistors are tested in accordance with IEC 60 115-1 using both 1.2/50us and 10/700us pulse shapes. The limit of acceptance is a shift in resistance of less than 0.5% from the initial value.

1.2/50µs Lightning Surge

MLF/MLFM Series Metal Film Melf Resistor

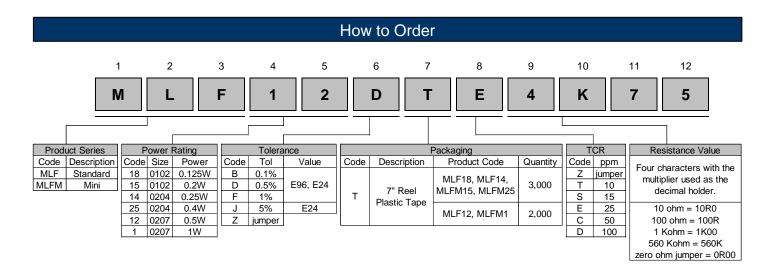
10/700µs Lightning Surge

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

RoHS Compliance Status								
Standard Product Series	uct Description		Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)		
MLF	Precision Metal Film Melf Resistor	SMD	YES	100% Matte Sn	Always	Always		
MLFM	Precision Metal Film Mini Melf Resistor	SMD	YES	100% Matte Sn	Always	Always		

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Metal Film Resistors - Through Hole category:

Click to view products by Stackpole manufacturer:

Other Similar products are found below :

FRN25J330R FRN50J1R0S H4100RBYA H415RBZA H41K1BYA H41K5BYA H41M0BDA H420R5BCA H421R5BZA H4221RBYA H424K3BDA H442K2BDA H45K62BZA H4634RBZA H473R2BZA H4931KBZA H8160KFDA H8274KBZA H82K0FDA H82K0FZA H87K5DYA RLR05C1501GPB14 RLR05C6201GS RLR20C3240FRB14 RLR20C51R0GMB14 RLR32C7R50FMB14 RNC55H4642FPB14 HR01623J HR01682J 270-1.69M-RC LR0204F110R LR0204F18R LR0204F20K LR0204F20R LR0204F510R LR1F121R LR1F133K LR1F383R LR1F3K01 LR1F4K75 LR2F330RJIT LR2F51R LR2F910R ERX-2SZJR20E SQMR74K7J FMF-25FTF52-100K FRN50J100RS FRN50J470RS H4100RBZA H414R3BZA