General Purpose Metal Oxide Resistor

Resistive Product Solutions

Features:

- Lower-cost alternative to carbon comps and wirewounds
 - Coating meets UL 94V-0
- Meets solvent test of Mil Standard 202, Method 215
- Cut and formed product is available on select sizes; contact factory for details
- Higher or lower resistance values may be possible; contact factory
- Flameproof
- RoHS compliant, lead free and halogen free

Electrical Specifications								
Type / Code	Power Rating (Watts)	Maximum Working Voltage (1)	Maximum Overload Voltage	Dielectric Withstanding Voltage	Resistance Temperature Coefficient	Ohmic Range (Ω) and Tolerance		
	@ 70ºC					1%	2%	5%
RSF12	0.5W	250V	400V	350V	±200 ppm/ºC	0.1 - 150K	0.1 - 75K	0.1 - 1M
RSF1	1W	350V	600V	600V	±200 ppm/ºC	0.1 -	100K	0.1 - 1M
RSF2	2W	350V	600V	600V	±200 ppm/ºC	0.1 - 120K		0.1 - 1M
RSF3	3W	800V	1,000V	750V	±200 ppm/ºC	0.1 - 470K	0.1 - 560K	0.1 - 1M
RSF5	5W	1,000V	1,000V	750V	±200 ppm/ºC	0.1 - 470K	0.1 - 560K	0.1 - 1M
RSMF12	0.5W	250V	400V	350V	±200 ppm/⁰C	0.1 - 46.4K	0.1 - 47K	0.1 - 470K
RSMF1	1W	350V	600V	500V	±200 ppm/ºC	0.1 - 75K		0.1 - 470K
RSMF2	2W	350V	600V	500V	±200 ppm/ºC	0.1 - 100K		0.1 - 470K
RSMF3	3W	500V	800V	600V	±200 ppm/ºC	0.1 - 118K	0.1 - 120K	0.1 - 470K
RSMF5	5W	1,000V	1,000V	750V	±200 ppm/ºC	0.1 - 470K	0.1 - 560K	0.1 - 1M

(1) Lesser of \sqrt{PR} or maximum working voltage

Power Derating Curve:

General Purpose Metal Oxide Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

Performance Characteristics							
Test	Test Method	Test Specification		Typical Results			
Insulation Resistance	JIS C5201-1, IEC60115-1, 4.6	≥ 1	≥ 1GΩ				
Voltage Proof	JIS C5201-1, IEC60115-1, 4.7	≤ ± (0.5% + 0.05Ω)	No mechanical damage.	<± 0.25%			
Short Time Overload	JIS C5201-1, IEC60115-1, 4.13	≤ ± (0.75%	% + 0.05Ω)	<± 0.1%			
Resistance to Solder Heat	JIS C5201-1, IEC60115-1, 4.18	≤ ± (2.0% + 0.05Ω)		<± 1.0%			
Endurance at 70°C	JIS C5201-1, IEC60115-1, 4.25.1	≤± (5.0% + 0.05Ω)		<± 2.0%			
Robustness of Terminations	JIS C5201-1, IEC60115-1, 4.16	.16 ≤ ± (1.0% + 0.05Ω)		<± 0.10%			
Damp Heat (Steady state)	JIS C5201-1, IEC60115-1, 4.24	≤± (5% + 0.05Ω)		<± 1.5%			
Rapid Change of Temperature	JIS C5201-1, IEC60115-1, 4.19	≤± (1% + 0.05Ω)		<± 0.2%			
Resistance to Solvents	JIS C5201-1, IEC60115-1, 4.29	No damage to component or removal of marking.		Pass			
Intermittent Overload	JIS C5201-1, IEC60115-1, 4.39	≤± (2% + 0.05Ω)		<± 0.3%			
Accidental Overload (Flame resistance)	JIS C5201-1, IEC60115-1, 4.26	No flaming	g of gauze.	Pass			

Operating Temperature Range: -55°C to +200°C (RSF12, RSMF12, RSMF1) -55°C to +235°C (All others)

Mechanical Specifications								
$\begin{array}{c} & & & \\ & &$								
Type / Code	A Body Length	B Body Diameter	C Lead Length (Bulk)	D Lead Diameter	Lead-Tape Specification	Unit		
RSF12	0.35 ± 0.04	0.13 ± 0.03	1.10 ± 0.12	0.03 ± 0.003	0.250	inches		
	9.00 \pm 1.00	3.20 ± 0.80	28.00 ± 3.00	0.70 ± 0.08	6.35	mm		
RSF1	0.43 ± 0.06	0.18 ± 0.04	1.10 ± 0.20	0.03 ± 0.002	0.250	inches		
	11.00 ± 1.50	4.50 ± 1.00	28.00 ± 5.00	0.80 ± 0.05	6.35	mm		
RSF2	0.59 ± 0.06	0.22 ± 0.04	1.18 ± 0.20	0.03 ± 0.004	0.250	inches		
	15.00 ± 1.50	5.50 ± 1.00	30.00 ± 5.00	0.75 ± 0.10	6.35	mm		
RSF3	0.69 ± 0.04 17.50 ± 1.00	$\begin{array}{c} 0.24 \pm 0.02 \\ 6.00 \pm 0.50 \end{array}$	1.38 ± 0.12 35.00 ± 3.00	0.03 ± 0.002 0.80 ± 0.05	0.250 6.35	inches mm		
RSF5	0.96 ± 0.04 24.50 ± 1.00	$\begin{array}{c} 0.31 \ \pm \ 0.02 \\ 8.00 \ \pm \ 0.50 \end{array}$	1.38 ± 0.12 35.00 ± 3.00	0.03 ± 0.002 0.80 ± 0.05	0.250 6.35	inches mm		
RSMF12	0.24 ± 0.03	0.09 ± 0.01	1.10 ± 0.12	0.02 ± 0.003	0.250	inches		
	6.00 ± 0.80	2.30 ± 0.30	28.00 ± 3.00	0.55 ± 0.07	6.35	mm		
RSMF1	0.35 ± 0.04	0.13 ± 0.03	1.10 ± 0.12	0.03 ± 0.003	0.250	inches		
	9.00 \pm 1.00	3.20 ± 0.80	28.00 ± 3.00	0.70 ± 0.08	6.35	mm		
RSMF2	0.43 ± 0.06	0.18 ± 0.04	1.18 ± 0.20	0.03 ± 0.002	0.250	inches		
	11.00 ± 1.50	4.50 ± 1.00	30.00 ± 5.00	0.80 ± 0.05	6.35	mm		
RSMF3	0.59 ± 0.06	0.22 ± 0.04	1.18 ± 0.20	0.03 ± 0.004	0.250	inches		
	15.00 ± 1.50	5.50 ± 1.00	30.00 ± 5.00	0.75 ± 0.10	6.35	mm		
RSMF5	0.69 ± 0.04	0.24 ± 0.02	1.38 ± 0.08	0.03 ± 0.002	0.250	inches		
	17.50 ± 1.00	6.00 ± 0.50	35.00 ± 2.00	0.80 ± 0.05	6.35	mm		

General Purpose Metal Oxide Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

Packaging Specifications

Е

Reeled in accordance with EIA-296-F

Series	Code	A max ^{.(1)}	B max	С	D ⁽²⁾	Таре	Unit
	12	2.736 69.50	13.504 343.00	0.197 ± 0.020 5.00 ± 0.50	2.063 ± 0.079 52.40 ± 2.00	0.250 6.35	inches mm
	1	2.815 71.50	13.504 343.00	0.197 ± 0.020 5.00 ± 0.50	2.063 ± 0.079 52.40 ± 2.00	0.250 6.35	inches mm
RSF	2	3.524 89.50	13.504 343.00	0.394 ± 0.020 10.00 ± 0.50	2.500 ± 0.079 63.50 ± 2.00	0.250 6.35	inches mm
	3	3.740 95.00	12.008 305.00	0.394 ± 0.020 10.00 ± 0.50	2.874 ± 0.079 73.00 ± 2.00	0.250 6.35	inches mm
	5	4.331 110.00	12.008 305.00	0.394 ± 0.020 10.00 ± 0.50	3.465 ± 0.079 88.00 ± 2.00	0.250 6.35	inches mm
RSMF	12	2.618 66.50	13.504 343.00	0.197 ± 0.020 5.00 ± 0.50	2.063 ± 0.079 52.40 ± 2.00	0.250 6.35	inches mm
	1	2.736 69.50	13.504 343.00	0.197 ± 0.020 5.00 ± 0.50	2.063 ± 0.079 52.40 ± 2.00	0.250 6.35	inches mm
	2	2.815 71.50	13.504 343.00	0.197 ± 0.020 5.00 ± 0.50	2.063 ± 0.079 52.40 ± 2.00	0.250 6.35	inches mm
	3	3.524 89.50	13.504 343.00	0.394 ± 0.020 10.00 ± 0.50	2.500 ± 0.079 63.50 ± 2.00	0.250 6.35	inches mm
	5	3.740 95.00	12.008 305.00	0.394 ± 0.020 10.00 ± 0.50	2.874 ± 0.079 73.00 ± 2.00	0.250 6.35	inches mm

Dimension "E": This is a non-critical dimension that does not have a tolerance in the standard.

Range of diameters is from 0.547 inches (13.90 mm) to 1.500 inches (38.10 mm).

(1) Reference value only. The "A" dimension shall be governed by the overall length of the taped component.

The distance between flanges shall be 0.059 inches (1.50 mm) to 0.315 (8.00 mm) greater than the overall component.

(2) The given dimension "D" expresses the standard width spacing. A 26mm narrow spacing is available as option "N" packaging code.

Stackpole Electronics, Inc.

General Purpose Metal Oxide Resistor

Resistive Product Solutions

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 2). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament.

RoHS Compliance Status								
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)		
RSF	General Purpose Metal Oxide Leaded Resistor	Axial	YES	99.3/0.7 Sn/Cu 100% Matte Sn	Apr-05 (Japan) Jan-04 (Taiwan, China)	05/14 04/01		
RSMF	Mini-Metal Oxide Leaded Resistor	Axial	YES	99.3/0.7 Sn/Cu 100% Matte Sn	Apr-05 (Japan) Jan-04 (Taiwan, China)	05/14 04/01		

"Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the Eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thin Film Resistors - Through Hole category:

Click to view products by Stackpole manufacturer:

Other Similar products are found below :

 RESISTOR-0125-A
 MBA02040C3249FC100
 MBB02070C3011FC100
 MRS16000C2200FCT00
 MRS16000C1501FCT00

 MRS16000C6803FCT00
 MRS16000C2703FCT00
 MRS16000C4703FCT00
 MBA02040C1209FCT00
 MBA02040C2701FCT00

 MBA02040C3301FCT00
 MBA02040C3901FCT00
 MBA02040C5600FCT00
 MBA02040C6809FC100
 MBB02070D9312BCT00

 MBA02040C1008FCT00
 MBA02040C2202FCT00
 MBA02040C4754FRP00
 MBA02040C6041FRP00

 MBB02070C1821FRP00
 MBB0207IC1001FCT00
 MFP1-10RJI
 MFP2-100KJI
 MFR4-1K0FI
 MFR4-33RFI
 BPC5563K

 BPR5473J
 W21-1R2JI
 W31-R056JA1
 WR404140A6803J4100
 MFR3-47KFC
 MFR4-1R0FI
 MFR4-390RFI
 MRS25000C2373FC100

 CF18JT47K0
 MRS25000C1051FC100
 MFR5-15RFI
 MBB0207VD1004BC100
 BPC10203J
 RSF12JT150R
 RC14JT39K0

 MBA02040C6980FC100
 MRS25000C2002FC100
 MRS25000C8200FC100
 MBA02040C1878FC100
 MBE04140C1200FC100

 MBA02040C1600FC100
 MBA02040C7508FC100
 MRS25000C8200FC100
 MBA02040C1878FC100
 MBE04140C1200FC100