LSO2 Series Level Sensors

Features: IP68-only up to Screw in Thread, High Power Switch Option, Other Cables \& Connectors
$>$ Applications: Level Control, Detection and Monitoring
> Markets: Automotive, Appliance, HVAC/R, Test \& Measurement

Customer Options		Switch Model		Unit
Contact Data	66	85		
Rated Power (max.) Any DC combination of V\&A not to exceed their individual max.'s	10	100	W	
Switching Voltage (max.) DC or peak AC	180	1000	V	
Switching Current (max.) DC or peak AC	0.5	1.0	A	
Carry Current (max.) DC or peak AC	1.25	2.5	A	
Contact Resistance (max.) @ 0.5V \& 50mA	150	150	mOhm	

Glossary Contact Form	
Form A	$\mathrm{NO}=$ Normally Open Contacts $\mathrm{SPST}=$ Single Pole Single Throw
Form B	$\mathrm{NC}=$ Normally Closed Contacts $\mathrm{SPST}=$ Single Pole Single Throw
Form C	Changeover SPDT $=$ Single Pole Double Throw

Glossary Material	
PP: Polypropylene	For water applications and dilute acids
PA: Polyamide	For oil
NBR: Nitrile Butadiene Rubber	For oil, gasoline \& in high temperatures
SS: Stainless Steel	For high temp. $\left(>160^{\circ} \mathrm{C}\right)$

[^0]
LSO2 Series Level Sensors

General Sensor Data				
Materials				
Stem, nut	PA	PP		
Float	PA	PP		NBR
Seal	Nitrile Rubber			
Cable Specifications	Low Voltage (66 Switch Model)		High Voltage (85 Switch Model)	
Cross Section (mm^{2})	0.14		0.25	
Cable Material	PVC			
Packing	Bulk			
Environmental Data				Unit
Shock Resistance (max.) $1 / 2$ sine wave duration 11 ms		50		g
Vibration Resistance (max.)		20		g
Operating Temperature Cable not moved		-20 to 80		${ }^{\circ} \mathrm{C}$
Operating Temperature Cable moved		-5 to 80		${ }^{\circ} \mathrm{C}$
Storage Temperature		-30 to 80		${ }^{\circ} \mathrm{C}$

LSO2 Reed Sensor

Handling \& Assembly Instructions	
$>$	Max torque of nuts 1 Nm
$>$	Cable bending-radius is diameter $\times 15$
$>$	Min. bending distance to housing is 5 mm
$>$	Decrease switching distance by mounting on iron
$>$	Do not use magnetically inductive screws
$>$	Series resistor recommended for $>5 \mathrm{~m}$ cable length

Please note: All technical specifications on this series datasheet refer to the standard product range. Modifications in the sense of technical progress are reserved. For general information only. For more specific information, please consult the product datasheet, available upon request.

This series datasheet could contain technical inaccuracies or typographical errors. Changes are periodically made to the information herein. These change will be incorporated in future revisions.

For deviating values, most current specifications and products please contact your nearest sales office.

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Liquid Level Sensors category:
Click to view products by Standexmeder manufacturer:
Other Similar products are found below :
F03-16PT-1M FSH-21 FSH-25 FSH-34 FSH-35 FSV-31 FSV-35 RSF54H100R1/8 LRNH31S41 F03-16PT-10M F03-16SFC-10M F03-15-1M F03-16SF-5M F03-16PE-5M F03-16PT-5M SCN-1518SC LL103000 LRNR31N01 F03-16PT-2M 14102 MS03-PP F03-16SF-10M KSL-100-1 LS01-1A66-PP-2000W LS01-1B66-PP-500W LS02-1B66-S-500W LS02-1B85-PP-5000W LS03-1A85-PP-500W LS03/DL-1A85-PA-500W EL-10N EL-3N LL01-1AA01 59630-1-T-02-F SB0870 LS04-1B66-2-500W LFFS 011 PS-3S (Q) T0-SKF-0.5 T0-SKF-10 T0-SKF-5 VNI3 CLE2P VNI1 LBFS 0111 LFFS 014 KSL-35-PP KSL-88-PP LS02-1A85-PP-500W LS02-1B85-PP-500W LS03-1A85-PA-500W

[^0]: Version 02
 05 Mar 2019
 Page 1
 D. Küchler

[^1]: Version 0205 Mar 2019
 Page 2
 D. Küchler

