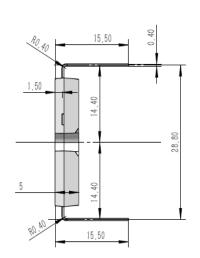
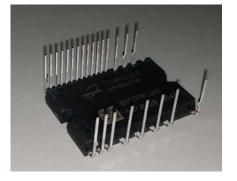

Compact - IPM ID20FFT60U1S

Features


- Adopt the latest trench IGBT technology to get a good overall loss trade-off.
- Open Emitter on N terminal for low cost current sensing application.
- Matched propagation delay and arm shooting through prevention.
- Built-in bootstrap diodes with current limiting resistor.
- Provided a fault signal (FO pin) and shut-off internal IGBT when suffer S.C. and under-voltage faulty event.
- RoHS compatible.
- UL 1557 Compliance.



TERMINAL CODE

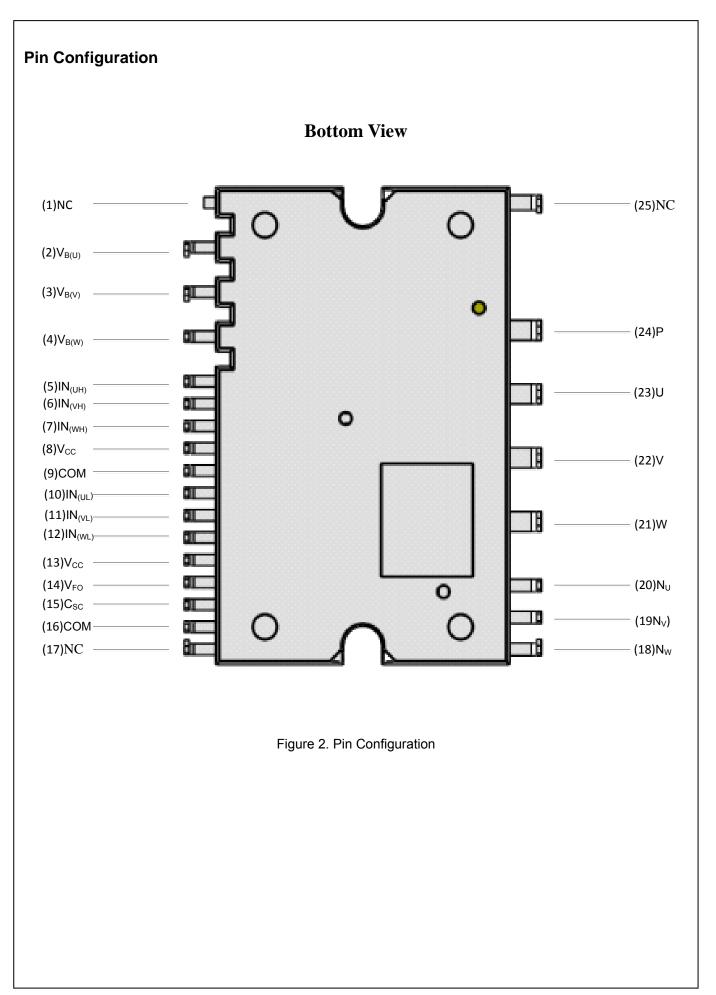

1 NC	16 COM
$2 \; V_{B(U)}$	17 NC
3 V _{B(V)}	$18 \; \text{N}_{\text{W}}$
$4 V_{B(W)}$	$19 \; N_V$
5 IN _(UH)	$20 \; \text{N}_{\text{U}}$
6 IN _(VH)	21 W
7 IN _(WH)	22 V
8 V _{CC}	23 U
9 COM	24 P
10 IN _{(UL})	25 NC
11 IN _(VL)	
12 IN _(WL)	
$13 V_{CC}$	
$14 V_{FO}$	
15 C _{SC}	

Table1: Pin Descriptions

No.	Symbol	Pin Description
1	NC	No connection
2	$V_{B(U)}$	High - side Bias Voltage for U Phase IGBT Driving
3	V _{B(V)}	High - side Bias Voltage for V Phase IGBT Driving
4	$V_{B(W)}$	High - side Bias Voltage for W Phase IGBT Driving
5	IN _(UH)	Signal Input Terminal for High-side U Phase
6	IN _(VH)	Signal Input Terminal for High-side V Phase
7	IN _(WH)	Signal Input Terminal for High-side W Phase
8	Vcc	Supply Voltage Terminal for Driver IC
9	СОМ	Reference Voltage Terminal for Driver IC
10	IN _{(UL})	Signal Input Terminal for Low-side U Phase
11	IN _(VL)	Signal Input Terminal for Low-side V Phase
12	IN _(WL)	Signal Input Terminal for Low-side W Phase
13	V _{cc}	Supply Voltage Terminal for Driver IC
14	V _{FO}	Fault Output Terminal
15	Csc	Short-Current Detection Input
16	СОМ	Reference Voltage Terminal for Driver IC
17	NC	No connection
18	Nw	Negative DC-Link Input Terminal for W Phase
19	Nv	Negative DC-Link Input Terminal for V Phase
20	Nu	Negative DC-Link Input Terminal for U Phase
21	W	Output Terminal for W Phase
22	V	Output Terminal for V Phase
23	U	Output Terminal for U Phase
24	Р	Positive DC – Link Input
25	NC	No connection

(see figure 2, next page)

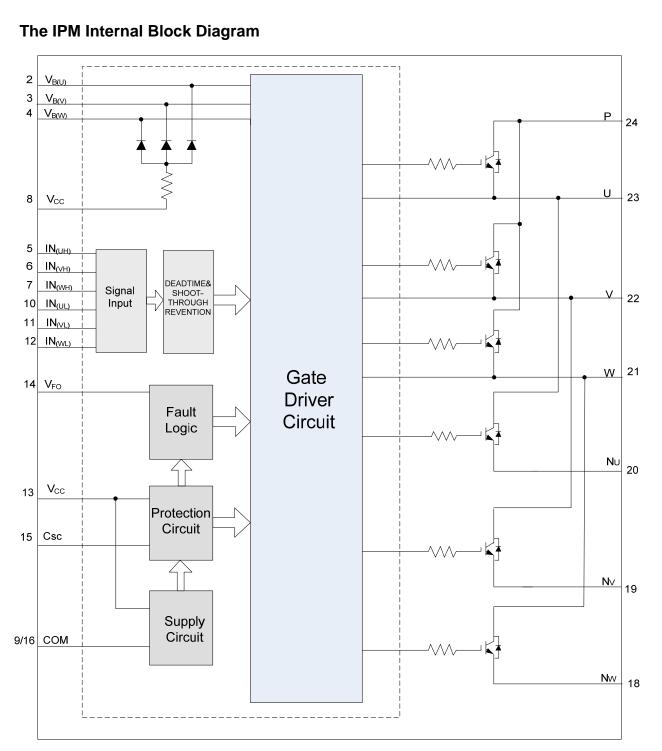


Figure 3. IPM Internal Block Diagram

Application:

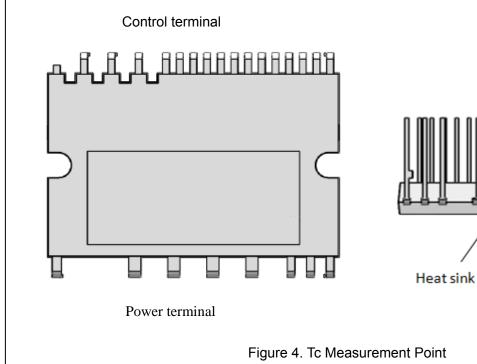
- Short-circuit current protection AC 100~240Vrms class 3 phase output for low power motor control.
- Household electric appliances such as air conditioners, washing machines, refrigerators, etc..,
- Low power industrial servo drives applications such as sewing machine, treadmill, etc...

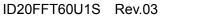
MAXIMUM RATINGS (T_j = 25° C)

INVERTER PART

Item	Symbol	Min.	Max.	Unit
Between collector to emitter voltage	V _{CES} (IGBT)	-	600	V
Supply voltage P-N	V _{PN}	-	450	V
Supply voltage (surge) P-N	V _{PN (surge)}	-	500	V
Each IGBT collector current	± I _C (Tc = 25℃)	-	20	А
Each IGBT collector current (peak)	± I _{CP} (Tc = 25℃, pulse)	-	60	А
Collector dissipation	P_C (Tc = 25 °C, per one chip)	-	70	W
Junction temperature	Tj (Note 1)	-40	+150	°C

Note 1: Power chip in IPM is qualified for 150°C operation. But overall junction temperature should be limited by $T_j \leq 125^{\circ}$ C (@ Tc \leq


100°C) to fit long term reliability requirement.

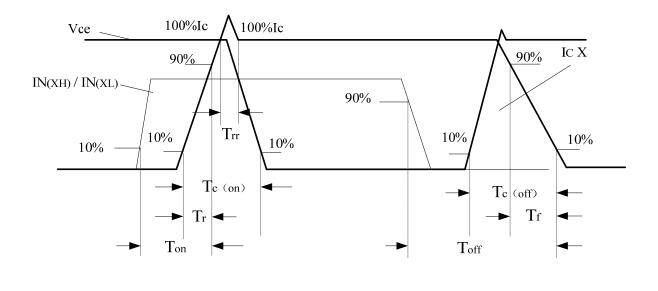

CONTROL PART

Item	Symbol	Min.	Max.	Unit
Driver IC supply voltage	V _{CC}	-0.3	20	V
P - side floating supply voltage	V _{B(u)S(u)} , B(V)S(V), B(W)S(W)	-0.3	20	V
Current sensing input voltage	V _{SC}	-0.3	Vcc+0.3	V
Logic input voltage	$\label{eq:IN_(UH),IN_(VH),IN_{(WH),}} \begin{split} &IN_{(UH),IN_{(VL)},IN_{(WL)}} \\ &IN_{(UL),IN_{(VL)},IN_{(WL)}} \end{split}$	-0.3	Vcc+0.3	V
Fault output voltage	V _{FO}	-0.3	Vcc+0.3	V
Fault output current	I _{FO}	-	10	mA

TOTAL SYSTEM

Item	Symbol	Min.	Max.	Unit
Module case operating temperature	T _C (No	ote 2) -20	+100	°C
Storage temperature	T _{stg}	-40	+125	°C
Isolation voltage (60Hz Sinusoidal, AC 1 minute, pins to heat-sink plate)	V _{iso}	-	1500	Vrms

Tc


THERMAL RESISTANCE

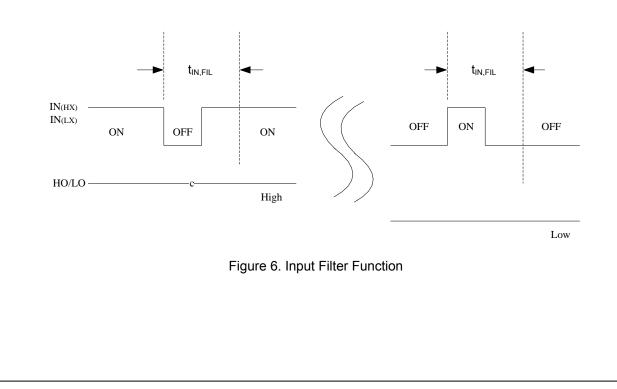
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to case thermal	R _{th(j-c)Q}	IGBT part (1/6)	-	1.6		°C AA/
resistance	R _{th(j-c)F}	FWD part (1/6)	-	2.0		°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C)

INVERTER PART

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Collector-emitter saturation voltage	V _{CE (sat)}	$V_{CC} = V_{B(U)S(U), B(V)S(V), B(W)S(W)} = T_j=25^{\circ}C$ 15V, I _C = 15, V _{SC} = 0V		1.7		V
FWD forward voltage drop	VF	T _j =25℃, - I _C = 20A		1.5		V
	T _{on}			0.7		
Switching times	Tr	V _D = 300V,		0.15		μS
	T _{c(on)}	$V_{CC} = V_{B(U)S(U), B(V)S(V), B(W)S(W)} = 15V,$		0.2		
(Fig. 5)	T _{off}	I _C = 20A, T _j =25℃,		0.8		
(i ig. 3)	T _f	V _{IN} = 5V <> 0V,		0.07		
	T _{c(off)}	V _{SC} = 0V, Inductive Load		0.15		
	T _{rr}			0.2		
Collector-emitter cut-off current	I _{CES}	V _{CE} =V _{CES}			500	μA

Figure 5. Switching Time Definition

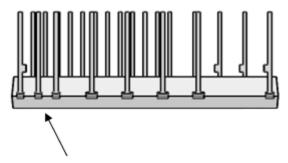

CONTROL PART (T _j = 25°C)	1					
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
IN _(UH、VH、WH) , IN _(UL、VL、WL) ON threshold voltage	V _{th(on)}		1.4	1.7	2.0	V
IN _(UH、VH、WH) ,IN _(UL、VL、WL) OFF threshold voltage	V _{th(off)}		2.2	2.5	2.8	V
IN _(UH、VH、WH) input bias current	I _{IN(UH、VH、WH)(HI)}	V _{IN(UH、VH、WH)} = 5V	-	-	220	μA
	I _{IN(UH、VH、WH)} (LO)	$V_{IN(UH_{V}VH_{V}WH)} = 0V$	-	-	300	μΛ
IN(UL, VL, WL) input bias current	I _{IN(UL、VL、WL) (HI)}	$V_{IN(UL, VL, WL)} = 5V$	-	-	220	μA
	IN(UL、VL、WL) (LO)	$V_{IN(UL, VL, WL)} = 0V$	-	-	300	μΑ
Driver IC supply voltage	V _{CC}		13.5	15.0	16.5	V
P - side floating supply voltage	$V_{B(U)S(U),\ B(V)S(V),\ B(W)S(W)}$		13.5	15.0	16.5	V
V _{CC} terminal input current	lc		-	-	2.3	mA
	V _{FOH}	V _{SC} =0V (Note 2)	4.9	-	-	V
Fault output voltage	V _{FOL}	V _{SC} =1V	-	-	200	mV
Short circuit trip level	V _{SC(ref)}	V _{CC} =15V, T _j = 25℃	0.41	0.46	0.51	V
Fault output pulse width	t _{FOD}	(Note 3)	100		-	us
	UVT _{VCC}	Trip level	8.6	9.4	10.2	V
Supply circuit under voltage protection	UVR _{VCC}	Reset level	9.6	10.4	11.2	V
protection	UVH	Hysteresis	-	1.0	-	V
$IN_{(\text{UL, VL, WL})}$ Input filter time	t _{IN,FIL}	VIN = 0 & 5V (Note 4)	100	200	-	ns
VF	Bootstrap diode forward voltage	lf=3A, Tj = 25℃	0.8	-	1.1	V
R	Limiting resistance	Individual resistor		100	-	Ohm

Note 2: V_{FO} output is open collector type, so this signal line should be pulled up to the +5V power supply with approximately 4.7KΩ

Note 3: Fault output pulse width is filter capacitor of S.C. depended.

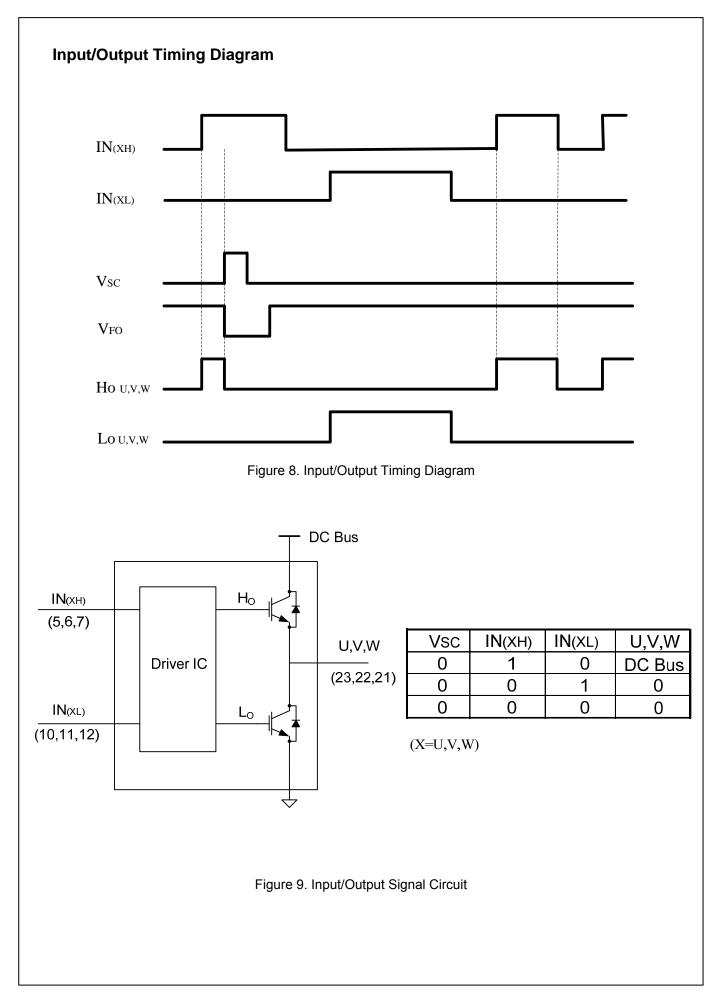
Note 4: For high side PWM, IN(UH, VH, WH) pulse width must be \geq 1 us.

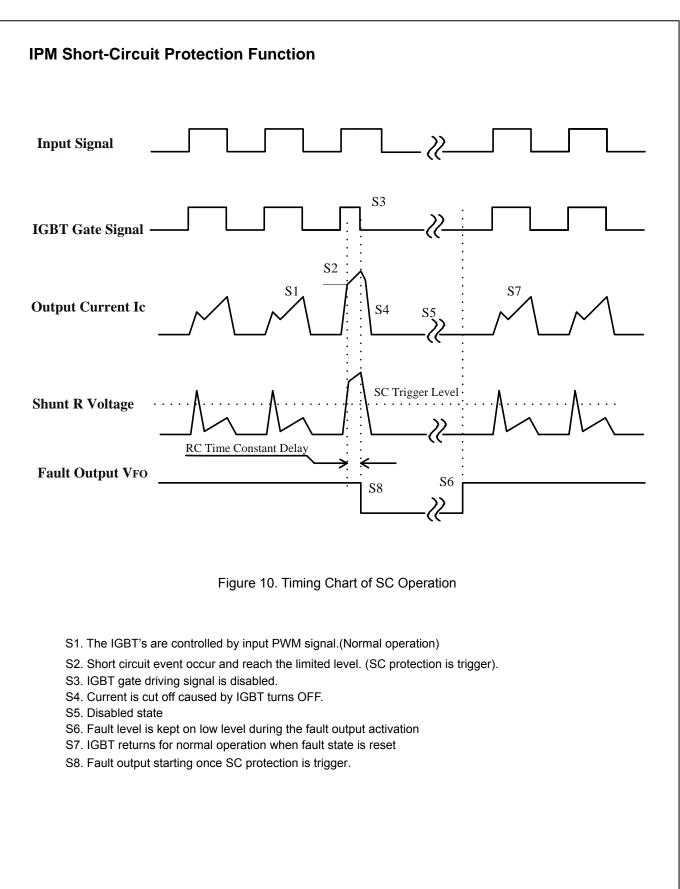
Input Filter Function

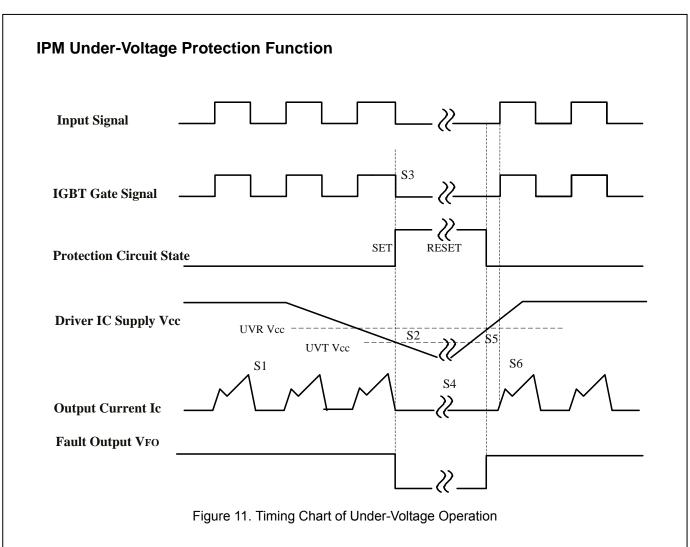


RECOMMENDED OPERATION CONDITIONS

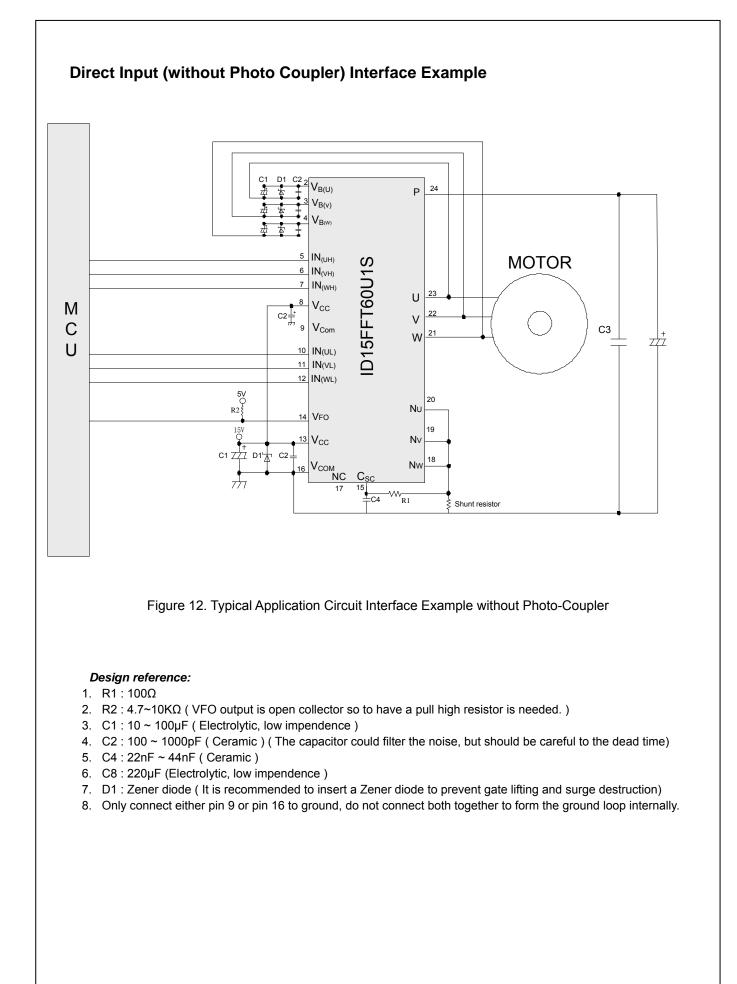
	_					
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
DC _ Link Supply voltage	VD	Applied between P-N	0	400	450	V
Driver IC supply voltage	V _{CC}	Applied between V _{CC} - COM	13.5	15.0	16.5	V
P - side floating supply voltage	V _{BS}	Applied between $V_{B(u \cdot v \cdot w)} - V_{S(u \cdot v \cdot w)}$	13.5	15.0	16.5	V
Input ON threshold voltage	V _{sc(ON)}	Applied between IN(UH, VH, WH) - COM	0~0.65			
Input OFF threshold voltage	V _{sc(OFF)}	and IN _(UL、VL、WL) - COM	4.0 ~ 5.5			
Supply voltage ripple	ΔV_D , ΔV_{DB}		-1	-	1	V/µs
Arm shoot-through blocking time	t _{dead}		2	-	-	μs
PWM input frequency	f _{PWM}	T _C ≦100℃, T _j ≦125℃	-	15	-	kHz

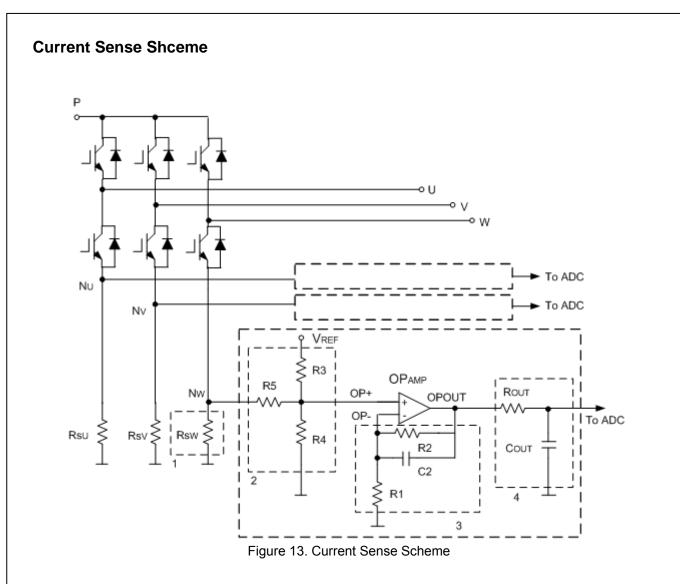

MECHANICAL CHARACTERISTICS AND RATINGS


Item	Condition			Тур.	Max.	Unit
Mounting torque	Mounting screw: M3	Recommended 0.65N•m	0.60	0.65	0.70	N•m
Weight			-	11	-	g
Heat-sink flatness			-50	-	100	μm



Contact to a heat sinke


Figure 7. Measurement Location of Heat-sink Flatness



- S1. The IGBT's are controlled by input PWM signal.(Normal operation)
- S2. Under-voltage protection is trigger
- S3. IGBT driving signals are disabled when fault condition occur
- S4. Fault state and the period will be able to control by external capacitor value.
- S5. Under-voltage event is recovered
- S6. IGBT returns for normal operation when fault state is reset

Description :

- 1、Half-bridge current sensing
- $2 \ voltage$ shifting of the V_{sense}
- 3、Voltage gain and filtering
- 4、Capacitor required by the ADC for sampling purpose

 R_{OUT} resistor is usually required in order to make the OP_{AMP} stable when the C_{OUT} capacitance increases

Design Reference :

1. R1 : 1.0 K Ω 2. R2 : 5.6 K Ω 3. R3 : 4.7 K Ω 4. R4: 910 Ω 5. R5 : 910 Ω 6.ROUT : 1.0 K Ω 7. C2 :10pF (Ceramic)

Precautions on Electrostatic Electricity

- (1) Operators must wear anti-static clothing and conductive shoes (or a leg or heel strap).
- (2) Operators must wear a wrist strap grounded to earth via a resistor of about 1 M Ω .
- (3) Soldering irons must be grounded from iron tip to earth, and must be used only at low voltages.
- (4) If the tweezers you use are likely to touch the device terminals, use anti-static tweezers and in particular avoid metallic tweezers. If a charged device touches a low-resistance tool, rapid discharge can occur. When using vacuum tweezers, attach a conductive chucking pat to the tip, and connect it to a dedicated ground used especially for anti-static purposes (suggested resistance value: 10⁴ to 10⁸Ω).
- (5) Do not place devices or their containers near sources of strong electrical fields (such as above a CRT).
- (6) When storing printed circuit boards which have devices mounted on them, use a board container or bag that's protected against static charge. To avoid the occurrence of static charge or discharge due to friction, keep the boards separate from one other and do not stack them directly on top of one another.
- (7) Ensure, if possible, that any articles (such as clipboards) which are brought to any location where the level of static electricity must be closely controlled are constructed of anti-static materials.
- (8) In cases where the human body comes into direct contact with a device, be sure to wear anti-static finger covers or gloves (suggested resistance value: $10^8\Omega$ or less).
- (9) Equipment safety covers installed near devices should have resistance ratings of $10^9\Omega$ or less.
- (10) If a wrist strap cannot be used for some reason, and there is a possibility of imparting friction to devices, use an ionizer.

CONFIDENTIALITY OBLIGATIONS:

This document contains sensitive information and classified "**CONFIDENTIAL**". Please make sure you should comply with the following security rules at all times Do not copy or reproduce all or part of this document and further copies can be provided on a "need to know basis", please contact your local Starpower sales office.

PLEASE READ CAREFULLY:

Starpower reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice. Starpower assumes no liability whatsoever relating to the choice, selection or use of the Starpower products and services described herein.

And purchasers are solely responsible for the choice, selection and use of the Starpower products and services described herein, No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by Starpower for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. Unless otherwise set forth in Starpower terms and conditions of sale Starpower disclaims any express or implied warranty with respect to the use and/or sale of Starpower products including without limitation implied warranties of merchantability, fitness for a particular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. Unless expressly approved in writing by an authorized Starpower representative, Starpower products are not recommended, authorized or warranted for use in military, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage.

Information in this document supersedes and replaces all information previously supplied. **www.powersemi.cc**

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Emulators/Simulators category:

Click to view products by STARPOWER manufacturer:

Other Similar products are found below :

AC244062 AC244064 SPC563M64CAL144 SPC563M64CAL176 ST7MDT2-EMU2B IM3316 IM1281B IM1275 IM1227 IM1259G IM1253B IM1253B(D) MJYS-QKJL-40/380V MJYS-QKJL-75/380V MJYD-JL-75/380V MJYD-JL-40/380V CI-B02CS01S CI-B03CS01S CI-B03GS01S GD10PJX120L2S HEDS-9730#Q50 HEDS-9700#F50 L-MZ07 L-MZ02 L-MZ021 TXVT4G6M-S JL_MOD_FH_V1.0 MKSDSOCKET-Pinboard V1 CY3250-24X33 AC244060 7027-D-350 DS1747WP-120IND+ AC244061 S5U1C31W74T1300 S5U1C17M13T2100 S5U1C17M13T1100 J-Link ULTRA+ AFM201TI-AY2LED2 AFW121T-EVB CP2102 CE118M12 ESP32-A1S ESP32-CAM ESP-32S ADZS-ICE-1000 ADZS-ICE-2000 USB-EA-CONVZ BH-USB-100v2-ARM BH-USB-100v2D BH-USB-200