

Low voltage fast-switching PNP power bipolar transistor

Features

- Very low collector-emitter saturation voltage
- High current gain characteristic
- Fast switching speed
- Surface mounting device in medium power SOT-223 package

Applications

- Emergency lighting
- LED
- CCFL drivers (back lighting)
- Voltage regulation
- Relay driver

Description

The device is a PNP transistor manufactured using new "PB-HCD" (Power Bipolar High Current Density) technology. The resulting transistor shows exceptional high gain performances coupled with very low saturation voltage.



Figure 1. Internal schematic diagram

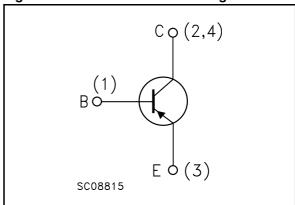


Table 1. Device summary

Order code	Marking	Package	Packaging
2STN2540	N2540	SOT-223	Tape and reel

Electrical ratings 2STN2540

1 Electrical ratings

Table 2. Absolute maximum rating

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base voltage (I _E = 0)	-40	V
V _{CEO}	Collector-emitter voltage (I _B = 0)	-40	V
V _{EBO}	Emitter-base voltage ($I_C = 0$)	-6	V
I _C	Collector current	-5	Α
I _{CM}	Collector peak current (t _P < 5ms)	-10	Α
I _{BM}	Base peak current (t _P < 5ms)	-2	Α
P _{tot}	Total dissipation at T _{amb} = 25 °C	1.6	W
T _{stg}	Storage temperature	-65 to 150	°C
TJ	Max. operating junction temperature	150	°C

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-amb} ⁽¹	Thermal resistance junction-amb max	78	°C/W

^{1.} Device mounted on PCB area of 1cm²

2 Electrical characteristics

 $(T_{case} = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current (I _E =0)	V _{CB} = -30 V			-0.1	μА
I _{EBO}	Emitter cut-off current (I _C =0)	V _{EB} = -5 V			-0.1	μА
		$I_C = -0.5 \text{ A}$ $I_B = -5 \text{ mA}$		-80	-120	mV
V _{CE(sat)} (1)	Collector-emitter saturation voltage	$I_C = -1 \text{ A}$ $I_B = -10 \text{ mA}$		-120	-180	mV
(****,		$I_C = -2 \text{ A}$ $I_B = -200 \text{ mA}$		-140	-200	mV
		$I_C = -5 \text{ A}$ $I_B = -500 \text{ mA}$		-350	-450	mV
V _{BE(sat)} (1)	Base-emitter saturation voltage	$I_C = -5 \text{ A}$ $I_B = -500 \text{ mA}$			-1.3	V
V _{BE(on)} (1)	Base-emitter on voltage	V _{CE} = -2 V I _C = -2 A			-1.25	V
	FE (1) DC current gain	$I_C = -0.5 \text{ A} V_{CE} = -2 \text{ V}$	250			
h (1)		$I_C = -1 A$ $V_{CE} = -2 V$	200			
n _{FE} '''		$I_C = -2 \text{ A}$ $V_{CE} = -2 \text{ V}$	150			
		$I_C = -5 \text{ A}$ $V_{CE} = -2 \text{ V}$	50			
C _{CBO}	Collector-base capacitance	I _E = 0 V _{CB} = -10 V f = 1 MHz		80		pF
	Resistive load	I _C = -1 A V _{CC} = -10 V				
t _{on}	Turn-on time	$-I_{B1} = I_{B2} = -0.1 \text{ A}$		75		ns
t _s	Storage time	$T_{p} = 30 \mu s$		426		ns
t _f	Fall time			62		ns

^{1.} Pulsed duration = 300 µs, duty cycle ≤ 1.5%

57

Electrical characteristics 2STN2540

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

Figure 3. DC current gain

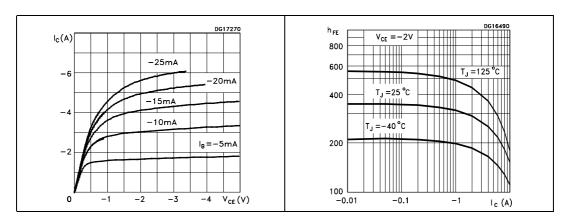


Figure 4. Collector-emitter saturation voltage

Figure 5. Base-emitter saturation voltage

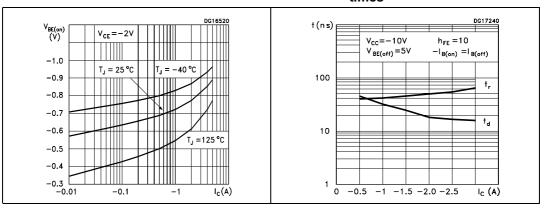
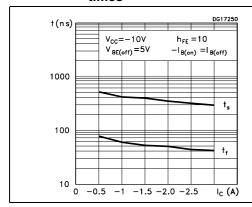
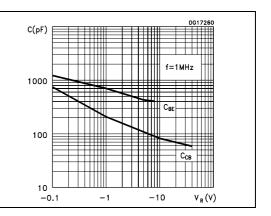



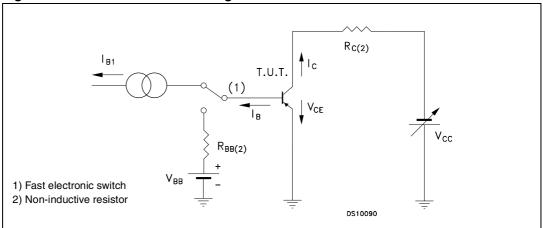
Figure 6. Base-emitter on voltage


Figure 7. Resistive load switching times



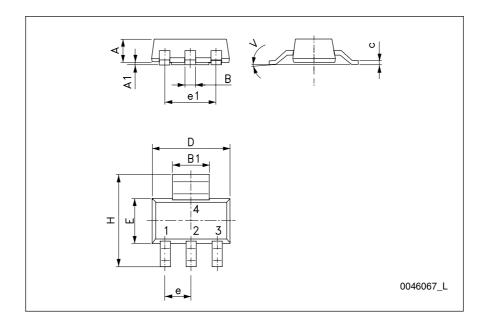
4/9

Figure 8. Resistive load switching times


Figure 9. Capacitance

2.2 Test circuit

Figure 10. Resistive load switching test circuit


577

3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

SOT-223 mechanical data

DIM.	mm.			
DIW.	min.	typ	max.	
Α			1.80	
A1	0.02		0.1	
В	0.60	0.70	0.85	
B1	2.90	3.00	3.15	
С	0.24	0.26	0.35	
D	6.30	6.50	6.70	
е		2.30		
e1		4.60		
E	3.30	3.50	3.70	
Н	6.70	7.00	7.30	
V			10 °	

Revision history 2STN2540

4 Revision history

Table 5. Document revision history

Date	Revision	Changes
23-Oct-2003	1	Initial release
03-Nov-2006	2	Added new graphics: fig.2, fig. 7, fig.8, fig.9.
14-Jan-2008	3	Document status promoted from preliminary data to datasheet.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460
2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM
2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E
US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R
MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E
NSV40301MZ4T1G NTE101 NTE13