LOW VOLTAGE CMOS 16-BIT D-TYPE FLIP-FLOP (3-STATE) WITH 5V TOLERANT INPUTS AND OUTPUTS

- 5V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED :
$\mathrm{f}_{\mathrm{MAX}}=150 \mathrm{MHz}$ (MIN.) at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS:
$\mathrm{t}_{\mathrm{PLH}} \cong \mathrm{t}_{\mathrm{PHL}}$
- OPERATING VOLTAGE RANGE: $\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=2.0 \mathrm{~V}$ to 3.6 V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 16374
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE:

HBM $>2000 V($ MIL STD 883 method 5015); $\mathrm{MM}>200 \mathrm{~V}$

DESCRIPTION

The 74LCX16374 is a low vitioe CMOS 16 BIT D-TYPE FLIP-FLOP wint こ STATE OUTPUTS NON INVERTINC a a ricated with sub-micron silicon gate and do ble-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power and high speed 3.3^{\prime} v arplications; it can be interfaced to $5 \mathrm{~V}^{\text {n }}$ signal erivi: $=n m e n t$ for both inputs and outputs.
Trest ${ }^{1} 6$ bit D-TYPE flip-flops are controlled by tw = clock inputs (nCK) and two output enable inputs $(\mathrm{n} \overline{\mathrm{OE}})$. On the positive transition of the (nCK), the nQ outputs will be set to the logic state that were setup at the nD inputs. While the ($\mathrm{n} \overline{\mathrm{OE} \text {) input }}$ is low, the 8 outputs (nQ) will be in a normal state (high or low logic level) and while high level the outputs will be in a high impedance state.
Any output control does not affect the internal operation of flip flops; that is, the old data can be retained or the new data can be entered even while the outputs are off.
It has same speed performance at 3.3 V than 5 V AC/ACT family, combined with a lower power consumption.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

ORDER CODES

PACKAGE	rUӞE	T \& R
TSSOP	74LCX16374TTR	

PIN C,CNNECTION

| $10 E$ | 1 |
| :--- | :--- | :--- | :--- | :--- |

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	1'⿹E	3 State Output Enable Input (Active LOW)
$\begin{gathered} 2,3,5,6,8,9, \\ 11,12 \end{gathered}$	1Q0 to 1Q7	3-State Outputs
$\begin{aligned} & 13,14,16,17, \\ & 19,20,22,23 \end{aligned}$	2Q0 to 2Q7	3-State Outputs
24	$2 \overline{O E}$	3 State Output F-ıab:e Input (Activ, OWN,
25	2CK	Latch Frable 'nput
$\begin{aligned} & 36,35,33,32, \\ & 30,29,27,26 \end{aligned}$	2D0 to 2D7	Da a 'nkuts
$\begin{aligned} & 47,46,44,43, \\ & 41,40,38,37 \end{aligned}$	1D0 \pm 127	「,ata Inputs
48	1CK	Latch Enable Input
$\begin{aligned} & 4,10,15,21 \\ & 28,34,37,45 \end{aligned}$	- GND	Ground (0V)
7 ¢6 31, 42	V_{CC}	Positive Supply Voltage

TRUTH TABLE

INPUTS			OUTPUT
$\overline{\mathbf{O E}}$	$\mathbf{C K}$	\mathbf{D}	\mathbf{Q}
H	X	X	Z
L	L	X	NO CHANGE* *
L	-	L	L
L	-	H	H

X: Don't Care
Z : High Impedance

IEC LOGIC SYMEOLS

LOGIC DIAGRAM

This logic diagram has not to be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to +7.0	V
V_{O}	DC Output Voltage（OFF State）	-0.5 to +7.0	V
V_{O}	DC Output Voltage（High or Low State）（note 1）	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current＊I	－ 50	mA
IOK	DC Output Diode Curren（noむで）	－ 50	mA
I_{0}	DC Output Curren＋	± 50	mA
I_{CC}	DC Supply Cu remper Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$		± 100	mA
$\mathrm{T}_{\text {stg }}$	Stc．aje 7emperature	-65 to＋150	${ }^{\circ} \mathrm{C}$
T_{L}		300	${ }^{\circ} \mathrm{C}$

Absolu＋e： 1_{c} xinıum Ratings are those values beyond which damage to the device may occur．Functional operation under these conditions is not matiec
1，to di）Solute maximum rating must be observed
2） $10<G N D$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage（note 1）	2.0 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage（OFF State）	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage（High or Low State）	0 to V_{CC}	V
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3．6V）	± 24	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right)$	± 12	mA
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time（note 2）	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1）Truth Table guaranteed： 1.5 V to 3.6 V
2） V_{IN} from 0.8 V to 2 V at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

DC SPECIFICATIONS

Symbol	Parameter	Test Condition		Value				Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$		-40 to $85{ }^{\circ} \mathrm{C}$		-55 to $125{ }^{\circ} \mathrm{C}$		
				Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.7 to 3.6		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8		0.8	V
V_{OH}	High Level Output Voltage	2.7 to 3.6	$\mathrm{l}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.7	$\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.2		2.2		
		3.0	$\mathrm{l}_{\mathrm{O}}=-18 \mathrm{~mA}$	2.4		2.4		
			$\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$	2.2		2.2	χ	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	2.7 to 3.6	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2		0.2	V
		2.7	$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4		0.4	
		3.0	$\mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA}$		0.4		0.4	
			$\mathrm{l}_{\mathrm{O}}=24 \mathrm{~mA}$		0.5		0.55	
1	Input Leakage Current	2.7 to 3.6	$\mathrm{V}_{\mathrm{I}}=0$ to 5.5 V	± 5			± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		10		10	$\mu \mathrm{A}$
l_{OZ}	High Impedance Output Leakage Current	2.7 to 3.6	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{1 \mathrm{H}} \text { ? } \mathrm{V}_{\mathrm{II}} \\ & \mathrm{~V}_{\mathrm{O}}=0 \text { to } / \mathrm{CC} \end{aligned}$		± 5		± 5	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent Supply Current	$2.7 \text { to } 3.6$	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \because \mathrm{cr} \mathrm{~V}_{\mathrm{O}}=3.6 \text { to } 5.5 \mathrm{~V} \end{aligned}$		20 ± 20		20 ± 20	$\mu \mathrm{A}$
$\Delta_{\text {l }}$	ICC incr. per Input	2.71036	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500		500	$\mu \mathrm{A}$

DYNAMIC SWITCHING \bumpeq L. $\triangle 1$ IIACTERISTICS

Symbol	Parameter	Test Condition		Value			Unit
		$\begin{aligned} & V_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
VaLr	Dynamic Low Level Quiet Output (note 1)	3.3	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V} \end{gathered}$		0.8		V
V ${ }_{\text {OLV }}$					-0.8		

1) Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition				Value				Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}} \\ (\mathrm{pF}) \end{gathered}$	\mathbf{R}_{L} (Ω)	$\begin{aligned} & \mathbf{t}_{\mathbf{s}}=\mathbf{t}_{\mathrm{r}} \\ & \text { (ns) } \end{aligned}$	-40 to $85{ }^{\circ} \mathrm{C}$		-55 to $125{ }^{\circ} \mathrm{C}$		
						Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time	2.7	50	500	2.5	1.5	6.5	1.5	6.5	ns
		3.0 to 3.6				1.5	6.2	1.5	6.2	
$t_{\text {PZL }} \mathrm{t}_{\text {PZH }}$	Output Enable Time to HIGH and LOW level	2.7	50	500	2.5	1.5	6.3	1.5	6.3	ns
		3.0 to 3.6				1.5	6.1	1.5	6.1	
$\mathrm{t}_{\mathrm{PLZ}} \mathrm{t}_{\text {PHZ }}$	Output Disable Time from HIGH and LOW level	2.7	50	500	2.5	1.5	6.2	1.5	6.2	
		3.0 to 3.6				1.5	6.0	1.5	6.0	
ts	Set-Up Time, HIGH or LOW level (Dn to CK)	2.7	50	500	2.5	2.5		2.5	K	ns
		3.0 to 3.6				2.5		2.5	-	
$t_{\text {h }}$	Hold Time, HIGH or LOW level (Dn to CK)	2.7	50	500	2.5	1.5		1.5		ns
		3.0 to 3.6				1.5		1.5		
t_{w}	CK Pulse Width, HIGH or LOW	2.7	50	500	2.5	3.0	,	3.0		ns
		3.0 to 3.6				20^{-}		3.0		
$\mathrm{f}_{\text {MAX }}$	Clock Pulse Frequency	3.0 to 3.6	50	500	2.5	170		150		MHz
tosth toshl	Output To Output Skew Time (note1, 2)	3.0 to 3.6	50		$2 j$		1.0		1.0	ns

1) Skew is defined as the absolute value of the difference hetween the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW ($\mathrm{t}_{\mathrm{OLLH}}-\left|\mathrm{t}_{\mathrm{F}} \cdot \mathrm{Hm}^{-t_{\text {PLHn }}}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {PHLn }}\right|$)
2) Parameter guaranteed by design

CAPACITIVE CHARACTERISTI'CS

Symbol		Test Condition		$\begin{gathered} \text { Value } \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$			Unit
		V_{cc} (V)					
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	3.3	$\mathrm{V}_{\text {IN }}=0$ to V_{CC}		7		pF
$\mathrm{CO}^{-1 T}$	Output Capacitance	3.3	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$		8		pF
${ }^{\text {PPD }}$	Power Dissipation Capacitance (note 1)	3.3	$\begin{gathered} \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		20		pF

[^0] load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $l_{\mathrm{CC}(\mathrm{opr})}=\mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 16$ (per circuit)

TEST CIRCUIT

	TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$		Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$		6 V
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$		GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R 1=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)

WAVEFORM 1 : PROPAGATION DELAYE, SETUP AND HOLD TIMES, MAXIMUM CLOCK FREQUENCY ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cy:le)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 3 : PULSE IN'D :H (f=1MHz; 50\% duty cycle)

TSSOP48 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002		0.006
A2		0.9			0.035	
b	0.17		0.27	0.0067		0.011
c	0.09		0.20	0.0035		0.0079
D	12.4		12.6	0.488		0.496
E		8.1 BSC			0.318 BSC	
E1	6.0		6.2	6		0.244
e		0.5 BSC			0.0197 BSC	
K	0°		8	0°		8°
L	0.50		0.75	0.020		0.030

Tape \& Reel TSSOP48 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		30.4			1.197
T			8.9	0.343		0.350
Ao	8.7		13.3	0.516		0.524
Bo	13.1		1.7	0.059		0.067
Ko	1.5		4.1	n		0.161
Po	3.9		12.1	0.468		0.476
P	11.9					

Note: Drawing not in scale

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM TC7WZ74FK,LJ(CT JM38510/30106BEA CD40174BF3A HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG 74VHCV374FT(BJ) 74VHCV574FT(BJ)

[^0]: 1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without
