LOW VOLTAGE CMOS QUAD 2-INPUT AND GATE WITH 5V TOLERANT INPUTS

- HIGH SPEED:
$\mathrm{t}_{\mathrm{PD}}=4.8 \mathrm{~ns}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- 5V TOLERANT INPUTS
- INPUT VOLTAGE LEVEL:
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}$ AT $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$ (MAX.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- LOW NOISE:
$\mathrm{V}_{\mathrm{OLP}}=0.3 \mathrm{~V}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- SYMMETRICAL OUTPUT IMPEDANCE:
$\left|\mathrm{l}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$ (MIN)
- BALANCED PROPAGATION DELAYS:
$\mathrm{t}_{\mathrm{PLH}} \cong \mathrm{t}_{\text {PHL }}$
- Operating voltage range:
$\mathrm{V}_{\mathrm{Cc}}(\mathrm{OPR})=2 \mathrm{~V}$ to 3.6 V (1.2V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 08
- IMPROVED LATCH-UP IMMUNITY
- POWER DOWN PROTECTION ON INPUTS

DESCRIPTION

The 74LVX08 is a low voltage CMOS QUAD 2-INPUT AND GATE fabricated with sub-micron silicon gate and double-layer metal wiring C^{2} MOS technology. It is ideal for low power, battery operated and low noise 3.3 V applications.

Table 1: Order Codes

PACKAGE	T \& R
SOP	74LVX08MTR
TSSOP	74LVX08TTR

The internal circuit is composed of 2 stages including buffer output, which provides high noise immunity and stable output.
Power down protection is provided on all inputs and 0 to 7 V can be accepted on inputs with no regard to the supply voltage.
This device can be used to interface 5 V to 3 V system. It combines high speed performance with the true CMOS low power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

Figure 2: Input Equivalent Circuit

Table 2: Pin Description

PIN N	©	SYMBOL
$1,4,9,12$	NAME AND FUNCTION	
$2,5,10,13$	1 B to 4B	Data Inputs
$3,6,8,11$	Data Inputs	
7	GND 4 Y	Data Outputs
14	V $_{\text {CC }}$	Pround (0V)

Table 3: Truth Table

\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	L
L	H	L
H	L	L
H	H	H

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	-20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 25	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC $\mathrm{V}_{\text {CC }}$ or Ground Current	± 50	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	2 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time (note 2) $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right)$	0 to 100	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.2 V to 3.6 V
2) V_{IN} from 0.8 V to 2.0 V

Table 6: DC Specifications

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & V_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.0		1.5			1.5		1.5		V
		3.0		2.0			2.0		2.0		
		3.6		2.4			2.4		2.4		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	2.0				0.5		0.5		0.5	V
		3.0				0.8		0.8		0.8	
		3.6				0.8		0.8		0.8	
V_{OH}	High Level Output Voltage	2.0	$\mathrm{I}_{0}=-50 \mu \mathrm{~A}$	1.9	2.0		1.9		1.9		V
		3.0	$\mathrm{l}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	2.9	3.0		2.9		2.9		
		3.0	$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}$	2.58			2.48		2.4		
V_{OL}	Low Level Output Voltage	2.0	$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	V
		3.0	$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	
		3.0	$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$			0.36		0.44		0.55	
1	Input Leakage Current	3.6	$\mathrm{V}_{1}=5 \mathrm{~V}$ or GND			± 0.1		± 1		± 1	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	3.6	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND			2		20		20	$\mu \mathrm{A}$

Table 7: Dynamic Switching Characteristics

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {OLP }}$	Dynamic Low Voltage Quiet Output (note 1, 2)	3.3	$C_{L}=50 \mathrm{pF}$		0.3	0.5					V
$\mathrm{V}_{\text {OLV }}$				-0.5	-0.3						
$\mathrm{V}_{\text {IHD }}$	Dynamic High Voltage Input (note 1, 3)	3.3		2							
$\mathrm{V}_{\text {ILD }}$	Dynamic Low Voltage Input (note 1, 3)	3.3				0.8					

1) Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0 V to 3.3 V , $(\mathrm{n}-1)$ outputs switching and one output at GND.
3) Max number of data inputs (n) switching. $(\mathrm{n}-1)$ switching 0 V to 3.3 V . Inputs under test switching: 3.3 V to threshold (V ILD), 0 V to threshold $\left(V_{I H D}\right), f=1 \mathrm{MHz}$.

Table 8: AC Electrical Characteristics (Input $\left.t_{r}=t_{f}=3 n s\right)$

Symbol	Parameter	Test Condition			Value							Unit
		V_{cc} (V)	$\begin{gathered} C_{L} \\ (\mathrm{pF}) \end{gathered}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time	2.7	15			6.3	11.4	1.0	12.5	1.0	13.5	ns
		2.7	50			8.8	14.9	1.0	17.0	1.0	18.0	
		$3.3{ }^{(*)}$	15			4.8	7.1	1.0	8.5	1.0	9.5	
		$3.3{ }^{(*)}$	50			7.3	10.6	1.0	12.0	1.0	13.0	
tosth $\mathrm{t}_{\mathrm{OSHL}}$	Output To Output Skew Time (note1, 2)	2.7	50			0.5	1.0		1.5		1.5	ns
		$3.3{ }^{*}$ *	50			0.5	1.0		1.5		1.5	

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW
2) Parameter guaranteed by design
(*) Voltage range is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Table 9: Capacitive Characteristics

Symbol	Parameter	Test Condition		Value							Unit
		V_{cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	3.3			4	10		10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	3.3			18						pF

1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C} / 4$ (per gate)
Figure 3: Test Circuit

$C_{L}=15 / 50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{T}=Z_{\text {OUT }}$ of pulse generator (typically 50Ω)

Figure 4: Waveform - Propagation Delays ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

SO-14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	1.35		1.75	0.053		0.069
A1	0.1		0.25	0.004		0.010
A2	1.10		1.65	0.043		0.065
B	0.33		0.51	0.013		0.020
C	0.19		0.25	0.007		0.010
D	8.55		8.75	0.337		0.344
E	3.8		4.0	0.150		0.157
e		1.27			0.050	
H	5.8		6.2	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.4		1.27	0.016		0.050
k	0°		8°	0°		8°
ddd			0.100			0.004

TSSOP14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Tape \& Reel SO-14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4			
T			6.6	0.252		0.882
Ao	6.4		9.2	0.354		0.362
Bo	9		2.3	0.082		0.090
Ko	2.1		4.1	0.153		0.161
Po	3.9		8.1	0.311		0.319
P	7.9					

Note: Drawing not in scale

Tape \& Reel TSSOP14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4			
T			6.9	0.264		0.882
Ao	6.7		5.5	0.209		0.217
Bo	5.3		1.8	0.063		0.071
Ko	1.6		4.1	0.153		0.161
Po	3.9		8.1	0.311		0.319
P	7.9					

Note: Drawing not in scale

Table 10: Revision History

Date	Revision	Description of Changes
27-Aug-2004	4	Ordering Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
5962-8769901BCA 74HC85N NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLX2G08MUTCG 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLVVHC1G132DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLV74VHC1G08DTT1G NLV74VHC1GT32DTT1G NLVVHC1G08DFT1G NLVVHC1G09DFT1G NLVVHC1GT08DFT2G
NLX2G86MUTCG 5962-8973601DA

