

16 A overvoltage protected AC switch

Product status

ACST1635-8FP

Features

- Enables equipment to meet IEC 61000-4-5 surge with overvoltage crowbar technology
- High noise immunity against static dV/dt and IEC 61000-4-4 burst
- High junction temperature: T_i = 150 °C
- · Needs no external overvoltage protection
- V_{CL} gives headroom before clamping then crowbar action
- · Reduces component count
- ECOPACK®2 compliant component
- · Complies with UL standards (File ref: E81734)
- Provides UL certified insulation rated at 2000 V rms

Application

- · AC static switching in appliances and industrial control systems
- Drive of medium power AC loads such as:
 - Coffee making appliances
 - Universal drum motor of washing machine
 - Compressor of fridge or air conditioner
 - Heating and cooking appliances
 - Vacuum cleaners
 - Solid state relays

Description

The ACST1635-8FP belongs to the AC power switch range built with A.S.D.® technology. This high performance device is designed for home appliances or industrial systems and drives loads up to 16 A.

This ACST1635-8FP switch embeds a Triac structure with a high voltage crowbar device to absorb the inductive turn-off energy and withstand line surges such as those described in the IEC 61000-4-5 (surge immunity test).

1 Characteristics

Table 1. Absolute ratings (limiting values)

Symbol	Parameter		Value	Unit
I _{T(RMS)}	On-state rms current (full sine wave)	T _c = 84 °C	16	Α
	Non repetitive surge peak on-state current	f = 50 Hz, $t_p = 20 \text{ ms}$	140	A
I _{TSM}	T _j initial = 25 °C, (full cycle sine wave)	f = 60 Hz, $t_p = 16.7 \text{ ms}$	147	
l ² t	I ² t for fuse selection	t _p = 10 ms	130	A ² s
V _{DRM} /V _{RRM}	Repetitive peak off-stage voltage, gate open T _j		800	V
dl/dt	Critical rate of rise on-state current I _G = 2 x I _{GT} , tr ≤ 100 ns	f = 120 Hz	100	A/µs
V _{PP} ⁽¹⁾	Non repetitive line peak pulse voltage	T _j = 25 °C	2	kV
P _{G(AV)}	Average gate power dissipation $T_j = 150 ^{\circ}\text{C}$		0.1	W
P_{GM}	Peak gate power dissipation (t_p = 20 μ s) T_j = 150 °C		10	W
I _{GM}	Peak gate current (t_p = 20 μ s) T_j = 150 °C		1	Α
T _{stg}	Storage temperature range		-40 to +150	°C
Tj	Operating junction temperature range			°C
T _L	Lead temperature for soldering during 10 s			°C
V _{ins}	Insulation rms voltage (60 seconds)			V

^{1.} according to test described by standard IEC 61000-4-5, see Figure 18. Overvoltage ruggedness test circuit for resistive and inductive loads for IEC 61000-4-5 standards for conditions

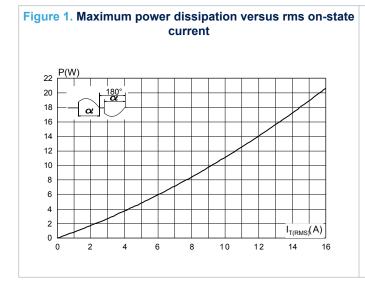
Table 2. Electrical characteristics

Symbol	Test conditions	Quadrant	Tj	Value		Unit
I _{GT}				Max.	35	mA
'GT	V_{OUT} = 12 V, R_L = 33 Ω	1 - 11 - 111	25 °C	Min.	1.75	mA
V _{GT}				Max.	1.0	V
V_{GD}	$V_{OUT} = V_{DRM}, R_L = 3.3 \text{ k}\Omega$	1 - 11 - 111	150 °C	Min.	0.2	V
I _H ⁽¹⁾	I _{OUT} = 500 mA		25 °C	Max.	30	mA
IL	I _G = 1.2 x I _{GT}	1 - 11 - 111	25 °C	Max.	40	mA
dV/dt ⁽¹⁾	V _{OUT} = 67% V _{DRM} , gate open		125 °C	Min.	1000	V/μs A/ms
uv/ut ⁽⁻⁾			150 °C		300	
	(dV/dt)c = 0.1 V/µs		125 °C		36	
(dl/dt)c ⁽¹⁾			150 °C		12	
(ui/ut)c ⁽⁺⁾	Without snubber		125 °C		12	
			150 °C		4	
V_{CL}	$I_{CL} = 0.1 \text{ mA}, t_p = 1 \text{ ms}$		25 °C	Min.	850	V

^{1.} For both polarities of OUT pin referenced to COM pin

DS9242 - Rev 3 page 2/13

Table 3. Static characteristics


Symbol	Test conditions			Value	Unit
V _{TM} ⁽¹⁾	I _{OUT} = 22.6 A, t _p = 500 μs	T _j = 25 °C	Max.	1.5	V
V _{T0} ⁽¹⁾	Threshold voltage	T _j = 150 °C	Max.	0.9	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 150 °C	Max.	30	mΩ
I _{DRM}		T _j = 25 °C		1	μA
	$V_{OUT} = V_{DRM} / V_{RRM}$	T _j = 125 °C	Max.	500	μA
I _{RRM}		T _j = 150 °C		2	mA

^{1.} For both polarities of OUT pin referenced to COM pin

Table 4. Thermal characteristics

Symbol	Parameter	Value	Unit	
R _{th(j-c)}	Junction to case (AC)	3.2	°C/W	
R _{th(j-a)}	Junction to ambient	60		

1.1 Characteristics (curves)

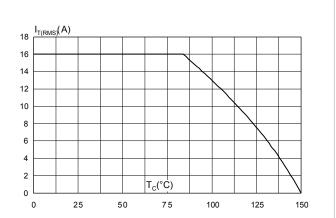


Figure 2. On-state rms current versus case temperature

DS9242 - Rev 3 page 3/13

Figure 3. On-state rms current versus ambient temperature (free air convection)

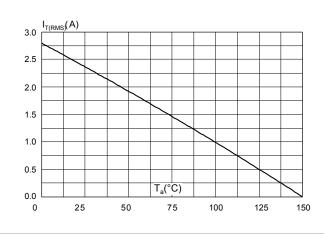


Figure 4. Relative variation of thermal impedance junction to case versus pulse duration

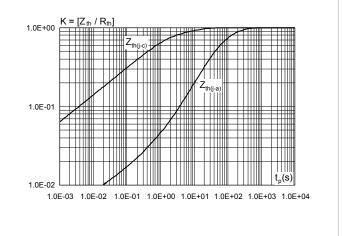


Figure 5. On-state characteristics (maximum values)

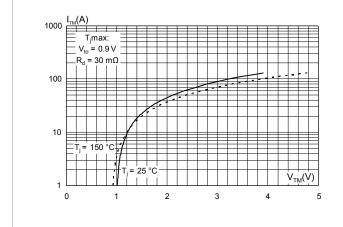


Figure 6. Surge peak on-state current versus number of cycles

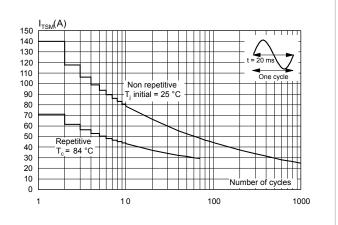


Figure 7. Non repetitive surge peak on-state current for a sinusoidal pulse

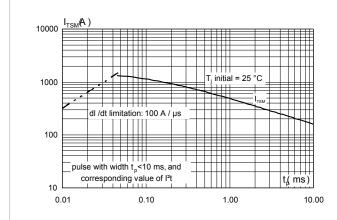
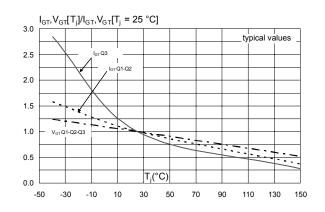



Figure 8. Relative variation of gate trigger current and gate trigger voltage versus junction temperature

DS9242 - Rev 3 page 4/13

Figure 9. Relative variation of holding current and latching current versus junction temperature

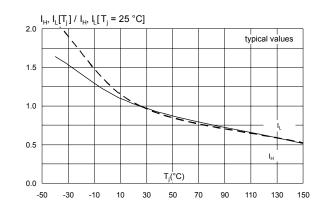


Figure 10. Relative variation of critical rate of decrease of main current (dl/dt)c versus reapplied (dV/dt)c

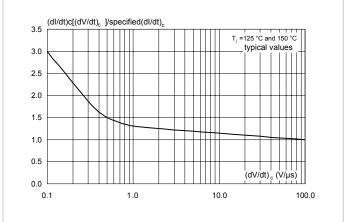


Figure 11. Relative variation of critical rate of decrease of main current versus junction temperature

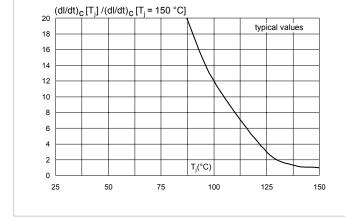


Figure 12. Relative variation of static dV/dt immunity versus junction temperature (typical values)

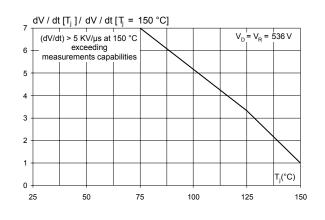


Figure 13. Relative variation of the maximal clamping voltage versus junction temperature (minimum value)

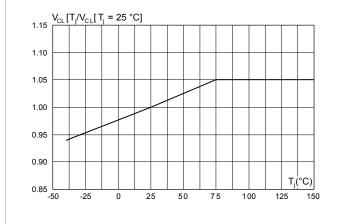
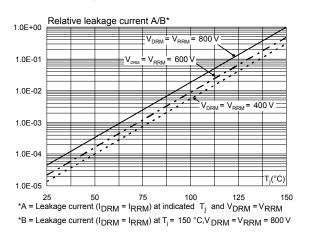
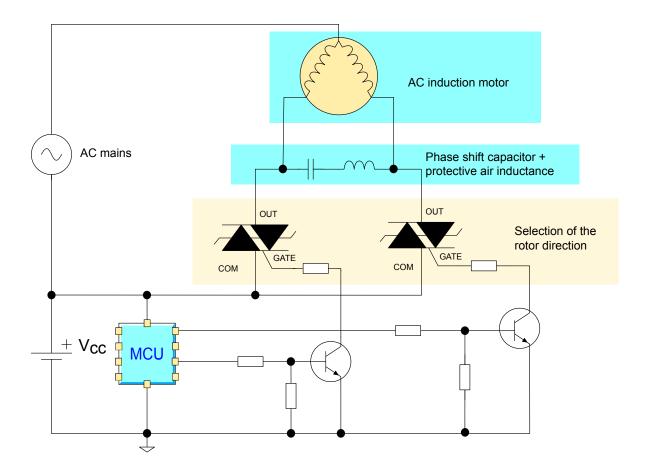



Figure 14. Relative variation of Leakage current versus junction temperature

DS9242 - Rev 3 page 5/13



2 Application information

2.1 Typical application descriptions

The ACST1635-8FP device can be used to control medium power load, such as AC motors in home appliances. Thanks to its thermal and turn off commutation performances, the ACST1635-8FP switch is able to drive an inductive load up to 16 A with no turn off additional snubber. It also provides high thermal performances in static and transient modes such as the compressor inrush current or high torque operating conditions of an AC motor.

Figure 15. AC induction motor control - typical diagram

DS9242 - Rev 3 page 6/13

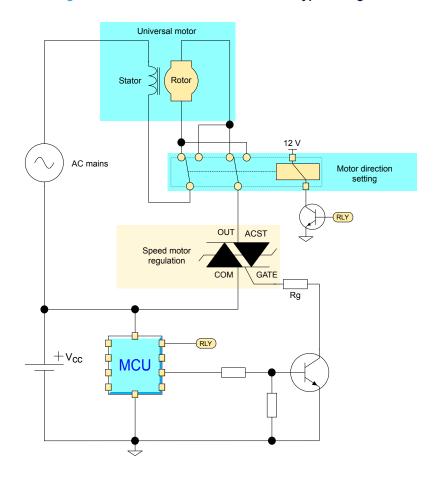


Figure 16. Universal drum motor control – typical diagram

The ACST1635-8FP device is also very effective in controlling resistive loads.

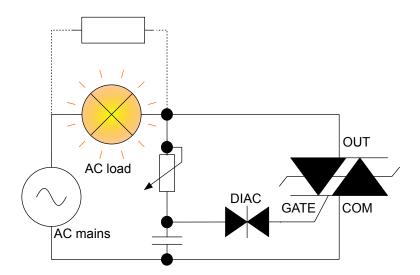


Figure 17. Resistive load control - typical diagram

DS9242 - Rev 3 page 7/13

2.2 AC line transient voltage ruggedness

In comparison with standard Triacs, which needs additional protection components against surge voltage, the ACST1635-8FP is self-protected against overvoltage, specified by the new parameter VCL. The ACST1635-8FP switch can safely withstand AC line transient voltages either by clamping the low energy spikes, such as the inductive spikes at switch off, or by switching to the on state (for less than 10 ms) to dissipate higher energy shocks through the load. This safety feature works even with high turn-on current ramp-up.

The test circuit of represents the ACST1635-8FP application, and is used to stress the ACST switch according to the IEC 61000-4-5 standard conditions. With the additional effect of the load which is limiting the current, the ACST switch withstands the voltage spikes up to 2 kV on top of the peak line voltage. The protection is based on an overvoltage crowbar technology. The ACST1635-8FP folds back safely to the on state as shown in . The ACST1635-8FP recovers its blocking voltage capability after the surge and the next zero crossing current. Such a non repetitive test can be done at least 10 times on each AC line voltage polarity.

Figure 18. Overvoltage ruggedness test circuit for resistive and inductive loads for IEC 61000-4-5 standards

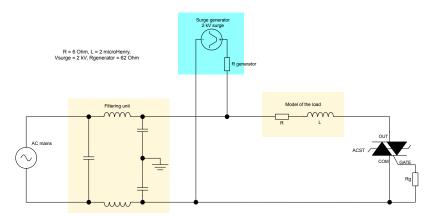
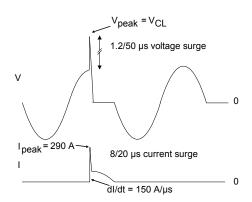



Figure 19. Typical voltage and current waveforms across the ACST1635-8FP during IEC 61000-4-5 standard test

DS9242 - Rev 3 page 8/13

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

3.1 TO-220FPAB package information

- Epoxy meets UL94, V0
- Recommended torque: 0.4 to 0.6 N·m

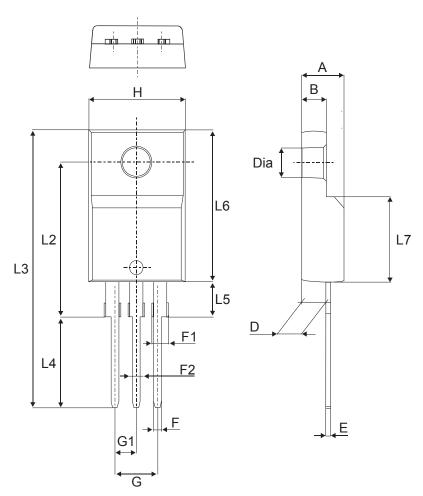
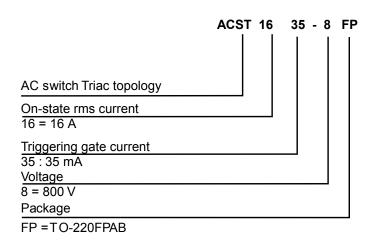


Figure 20. TO-220FPAB package outline

DS9242 - Rev 3 page 9/13

Table 5. TO-220FPAB package mechanical data


	Dimensions				
Ref.	Millim	eters		Inches	
	Min.	Max.	Min.	Max.	
Α	4.40	4.60	0.1739	0.1818	
В	2.5	2.7	0.0988	0.1067	
D	2.50	2.75	0.0988	0.1087	
E	0.45	0.70	0.0178	0.0277	
F	0.75	1.0	0.0296	0.0395	
F1	1.15	1.70	0.0455	0.0672	
F2	1.15	1.70	0.0455	0.0672	
G	4.95	5.20	0.1957	0.2055	
G1	2.40	2.70	0.0949	0.1067	
Н	10.00	10.40	0.3953	0.4111	
L2	16.00 typ.		0.6324 typ.		
L3	28.60	30.60	1.1304	1.2095	
L4	9.80	10.6	0.3874	0.4190	
L5	2.90	3.60	0.1146	0.1423	
L6	15.90	16.40	0.6285	0.6482	
L7	9.00	9.30	0.3557	0.3676	
Dia	3.0	3.20	0.1186	0.1265	

DS9242 - Rev 3 page 10/13

4 Ordering information

Figure 21. Ordering information scheme

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty.	Packing mode
ACST1635-8FP	ACST16358	TO-220FPAB	2.0 g	50	Tube

DS9242 - Rev 3 page 11/13

Revision history

Table 7. Document revision history

Date	Version	Changes
12-Sep-2012	1	First issue.
26-Mar-2015	2	Update of cover page and Table 1. Format updated to current standard.
26-Jan-2018	3	Updated Section 4 Ordering information. Updated title.

DS9242 - Rev 3 page 12/13

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

DS9242 - Rev 3 page 13/13

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A

NTE5629 NTE5688 CTB08-400CW D31410 T2535T-8I BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E

BT136D BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127

MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP

BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608

NTE5609 NTE5656 NTE56020