AS11P2TLR

Low voltage 1Ω single-pole double-throw analog switch with break-

 before-make feature
Datasheet - production data

Features

- High speed:
$-\quad \mathrm{t}_{\mathrm{PD}}=130 \mathrm{ps}$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$-\quad t_{\mathrm{PD}}=140 \mathrm{ps}$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- Ultra low power dissipation:
$-\quad \mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}$ (max.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
- Low ON resistance:
- $\quad \mathrm{R}_{\mathrm{ON}}=1.0 \Omega$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
$-\quad R_{\mathrm{ON}}=1.2 \Omega$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- $\quad \mathrm{R}_{\mathrm{ON}}=2.0 \Omega$ (typ.) at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$
- Wide operating voltage range:
- $\quad \mathrm{V}_{\mathrm{CC}}$ (opr.) $=1.65$ to 4.5 V single supply
- $\quad 5 \mathrm{~V}$ tolerant and 1.8 V compatible threshold ON digital control input at $\mathrm{V}_{\mathrm{CC}}=1.65$ to 4.5 V
- Latch-up performance exceeds 200 mA per JESD 78, Class II
- ESD performance tested per JESD 22
- 2000 V human-body model (A114-B, Class II)
- $\quad 200 \mathrm{~V}$ machine model (A115-A)
- 1000 V charged-device model (C101)

Description

The AS11P2TLR is a high speed CMOS low voltage single analog SPDT (single-pole doublethrow) switch or 2:1 multiplexer/demultiplexer switch manufactured using silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. Designed to operate from a 1.65 to 4.5 V supply, this device is ideal for portable applications.

The device offers very low ON-resistance (1 Ω) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$. Switch S 1 is ON (connected to common ports Dn) when the SEL input is held high, and OFF (state of high impedance exists between the two ports) when SEL is held low.

Switch S2 is ON (connected to common port D) when the SEL input is held low, and OFF (state of high impedance exists between the two ports) when SEL is held high.

Additional key features are fast switching speed, break-before-make delay time and ultralow power consumption. All inputs and outputs are equipped with protection circuits to protect against static discharge, giving them immunity from ESD and transient excess voltage.

Table 1. Device summary

Order code	Package	Packaging
AS11P2TLRQ	DFN6L $(1.2 \times 1 \mathrm{~mm})$	Tape and reel

Contents

1 Pin connections and functions 3
2 Electrical ratings 4
3 Electrical characteristics 5
3.1 DC electrical characteristics 5
3.2 AC electrical characteristics 6
3.3 Analog switch characteristics 7
4 Test circuits 8
5 Package information 12
6 Revision history 17

1 Pin connections and functions

Figure 1. Pin connections (top through view)

Table 2. Pin descriptions

Pin number	Symbol	Name and function
4	S1	Independent channel
6	S2	Independent channel
1	D	Common channels
3	SEL	Control
2	VCC $^{\text {GND }}$	Positive supply voltage
5	Ground (0 V)	

Figure 2. Input equivalent circuit

Table 3. Truth table

Sel	Switch S1	Switch S2
H	ON	OFF $^{(1)}$
L	OFF $^{(1)}$	ON

1. High impedance.

2 Electrical ratings

Stressing the device above the rating listed in Table 4: Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in Table 5: Recommended operating conditions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics ${ }^{\text {TM }}$ SURE program and other relevant quality documents.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IC}}$	DC control input voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	DC output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\mathrm{IKC}}$	DC input diode current on control pin $\left(\mathrm{V}_{\mathrm{SEL}}<0 \mathrm{~V}\right)$	-50	mA
I_{IK}	DC input diode current $\left(\mathrm{V}_{\text {IN }}<0 \mathrm{~V}\right)$	± 50	mA
I_{OK}	DC output diode current	± 20	mA
I_{O}	DC output current	± 200	mA
I_{OP}	DC output current peak (pulse at 1 ms, 10% duty cycle $)$	± 400	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or ground current	± 100	mA
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70{ }^{\circ} \mathrm{C}^{(1)}$	1120	mW
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature $(10$ s)	300	${ }^{\circ} \mathrm{C}$

1. Derate above $70^{\circ} \mathrm{C}$ by $18.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Table 5. Recommended operating conditions

Symbol	Parameter		Value
V_{CC}	Supply voltage	1.65 to 4.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0 to V_{CC}	V
V_{IC}	Control input voltage	0 to 4.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	0 to V_{CC}	V
T_{op}	Operating temperature	-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input rise and fall time control input	$\mathrm{V}_{\mathrm{CC}}=1.65$ to 2.7 V	0 to 20
	Ns / V		

3 Electrical characteristics

3.1 DC electrical characteristics

Table 6. DC specifications

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test condition	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
V_{IH}	High level input voltage	1.65-1.95		$0.65 \mathrm{~V}_{\text {CC }}$			$0.65 \mathrm{~V}_{\mathrm{CC}}$		V
		2.3-2.5		1.2			1.2		
		$2.7-3.0$		1.3			1.3		
		3.3-3.6		1.4			1.4		
		4.5		1.6			1.6		
$\mathrm{V}_{\text {IL }}$	Low level input voltage	1.65-1.95				0.40		0.40	V
		2.3-2.5				0.60		0.60	
		2.7-3.0				0.60		0.60	
		3.3-3.6				0.60		0.60	
		4.5				0.80		0.80	
R_{ON}	Switch ONresistance	1.8	$\begin{aligned} & V_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$		2.0	3.0		3.5	Ω
		2.7			1.3	1.6		1.8	
		3.0			1.2	1.5		1.7	
		4.5			1.0	1.2		1.4	
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON-resistance match between channels ${ }^{(1)}$	1.8	$\begin{aligned} & V_{\mathrm{S}} \text { at } \mathrm{R}_{\mathrm{ON}} \max \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$		0.06				Ω
		2.7			0.05				
		3.0			0.05				
		4.5			0.05				
$\mathrm{R}_{\text {FLAT }}$	ON-resistance flatness ${ }^{(2)}$	1.8	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } V_{C C} \\ & I_{S}=100 \mathrm{~mA} \end{aligned}$		1.0	1.5		1.5	Ω
		2.7			0.45	0.60		0.70	
		3.0			0.43	0.50		0.60	
		4.5			0.39	0.50		0.60	
loff	OFF state leakage current (Sn), (D)	4.3	$\mathrm{V}_{\mathrm{S}}=0.3$ or 4 V			± 20		± 100	nA
I_{IN}	Input leakage current	0-4.5	$\mathrm{V}_{\text {SEL }}=0$ to 4.5 V			± 0.1		± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent supply current	1.65-4.5	$\begin{aligned} & V_{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$			± 0.1		± 1.0	$\mu \mathrm{A}$

Table 6. DC specifications (continued)

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test condition	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
$I_{\text {cclv }}$	Quiescent supply current low voltage driving	4.3	$\mathrm{V}_{\text {SEL }}=1.65 \mathrm{~V}$		± 17	± 35		± 70	$\mu \mathrm{A}$
		4.3	$\mathrm{V}_{\text {SEL }}=1.80 \mathrm{~V}$		± 15	± 30		± 60	
		4.3	$\mathrm{V}_{\text {SEL }}=2.60 \mathrm{~V}$		± 5	± 10		± 20	

1. $\Delta R_{\mathrm{ON}}=R_{\mathrm{ON}(\mathrm{Max})}-R_{\mathrm{ON}(\mathrm{Min})}$.
2. Flatness is defined as the difference between the maximum and minimum value of ON-resistance as measured over the specified analog signal ranges.

3.2 AC electrical characteristics

Table 7. AC electrical characteristics $\left(C_{L}=35 \mathrm{pF}, R_{L}=50 \Omega, t_{r}=t_{f} \leq 5 \mathrm{~ns}\right)$

Symbol	Parameter	V_{cc} (V)	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			- 40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation delay	1.65-1.95			0.15				ns
		$2.3-2.7$			0.14				
		3.0-3.3			0.13				
		3.6-5.0			0.13				
t_{ON}	Turn-ON time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$		36				ns
		$2.3-2.7$	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		31	40		45	
		3.0-3.3			24	31		40	
		3.6-5.0			21	28		32	
$t_{\text {OFF }}$	Turn-OFF time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$		29				ns
		$2.3-2.7$	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		17	27		37	
		3.0-3.3			12	23		33	
		3.6-5.0			11	21		31	
t_{D}	Break-beforemake time delay	1.65-1.95	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \end{aligned}$		15				ns
		$2.3-2.7$			10				
		3.0-3.3			8				
		3.6-5.0			6				
Q	Charge injection	1.65	$\left\{\begin{array}{l} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{array}\right.$		16				pC
		2.3			22				
		3			26				
		5.0			33				

3.3 Analog switch characteristics

Table 8. Analog switch characteristics ($C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	
OIRR	OFF isolation ${ }^{(1)}$	1.65-5.0	$\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=100 \mathrm{kHz} \end{aligned}$		- 75				dB
Xtalk	Crosstalk	1.6-5.0	$\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=100 \mathrm{kHz} \end{aligned}$		-80				dB
THD	Total harmonic distortion	2.3-5.0	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$		0.03				\%
BW	-3 dB bandwidth	1.65-5.0	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		150				MHz
$\mathrm{C}_{\text {IN }}$	Control pin input capacitance				6				
C_{ON}	Sn port capacitance when switch is enabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		52				
$\mathrm{C}_{\text {OFF }}$	Sn port capacitance when switch is disabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		25				pF
C_{D}	D port capacitance when switch is enabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		50				

1. OFF isolation $=20 \log _{10}\left(V_{D} / V_{S}\right), V_{D}=$ output. $V_{S}=$ input to $O F F$ switch.

4 Test circuits

Figure 3. ON resistance

Figure 4. Bandwidth

Figure 5. OFF leakage

Figure 6. Channel-to-channel crosstalk

Figure 7. OFF isolation

Figure 8. Test circuit

1. $C_{L}=5 / 35 \mathrm{pF}$ or equivalent: (includes jig capacitance).
2. $R_{L}=50 \Omega$ op $\varepsilon \theta v \iota \varpi \alpha \lambda \varepsilon v \tau$.
3. $R_{T}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω).

Figure 9. Break-before-make time delay

Figure 10. Switching time and charge injection ($\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$, $C_{L}=100 \mathrm{pF}$)

Figure 11. Turn-on, turn-off delay time

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 12. DFN6L (1.2 $\times 1 \mathrm{~mm}$) package outline

1. Drawing is not to scale.

Table 9. DFN6L (1.2 $\times 1 \mathrm{~mm}$) mechanical data

Symbol	Dimensions (millimeters)		
	Typ.	Min.	Max.
A	0.50	0.45	0.55
A1	0.02	0	0.05
A3	0.127		
b	0.20	0.15	0.25
D	1.20	1.15	1.25
E	1	0.95	1.05
e	0.40		
L	0.35	0.30	0.40
L1	0.45	0.40	0.50

Figure 13. DFN6L ($1.2 \times 1 \mathrm{~mm}$) footprint recommendation

Figure 14. DFN6L carrier tape information

1. Measured from centreline of sprocket hole to centreline of pocket.
2. Cumulative tolerance of 10 sprocket holes is ± 0.20.
3. Measured from centreline of sprocket hole to centreline of pocket.
4. Other material available.
5. Drawing is not to scale.
6. All dimensions are in millimeters unless otherwise stated.

Figure 15. DFN6L reel information drawing (back view)

1. Drawing is not to scale.
2. Dimensions are in millimeters.

Figure 16. DFN6L reel information drawing (front view)

1. Drawing not to scale.

Dimensions are in millimeters.

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
07-Mar-2014	1	Initial release.
08-Nov-2017	2	Updated order code AS11P2TLR with AS11P2TLRQ Table 1: Device summary.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7

