

Datasheet

50 Ω nominal input / conjugate matched balun to BGA-4L STM32WL in high power mode, 862-928 MHz with integrated harmonic filter

Chip scale package on glass 8 bumps - 1.83 x 2.13 mm²

Features

- BGA STM32WL sub-GHz wireless microcontrollers impedance matched balun and Tx harmonics filter
- Optimized for BGA STM32WL sub-GHz wireless microcontrollers in high power mode and dedicated to 4-layer PCB
- 50 Ω nominal input / conjugate matched balun to BGA STM32WL
- 50 Ω nominal impedance on antenna side Tx and Rx
- Deep Tx rejection harmonic filter
- Low insertion loss
- Small footprint
- Low profile ≤ 630 µm after reflow
- High RF performance
- RF BOM and area reduction
- ECOPACK2 compliant component

Applications

- STM32WL sub-GHz wireless microcontrollers
- LPWAN-compliant radio solution, enabling the following modulations: LoRa®, (G)FSK, (G)MSK, and BPSK

Description

STMicroelectronics BALFHB-WL-01D3 is an ultra-miniature balun. This device integrates a matching network, balun, and harmonics filter. Matching impedance has been customized for the STM32WL sub-GHz wireless microcontrollers.

It is using STMicroelectronics IPD technology on a nonconductive glass substrate, which optimizes RF performances.

Product status
BALFHB-WL-01D3

1 Characteristics

Table 1. Absolute maximum ratings	(T _{amb} = 2	5 °C)
-----------------------------------	-----------------------	-------

Symbol	Parameter	Value	Unit
P _{IN}	Input power RFIN	22	dBm
V _{ESD}	ESD ratings human body model (JESD22-A114), all I/O one at a time while others connected to GND	2000	V
	ESD ratings machine model, all I/O	200	
T _{OP}	Operating temperature	-40 to +105	°C

Table 2. Impedances (T_{amb} = 25 °C)

Symbol	symbol Parameter		Value		Unit
Symbol	Farameter	Min.	Тур.	Max.	Unit
Z _{RX}	Nominal differential RX balun impedance	-	Matched to STM32WL	-	
Z _{TX}	Nominal TX filter impedance	-	Matched to STM32WL	-	Ω
Z _{RX-ANT}	Nominal Rx balun antenna impedance	-	50	-	12
Z _{TX-ANT}	Nominal Tx filter antenna impedance	-	50	-	

Table 3. Electrical characteristics and RF performances (T_{amb} = 25 °C)

Symbol	Doromotor	Test condition	Value			Unit
Symbol	Parameter			Тур.	Max.	Unit
f	Frequency range		862	915	928	MHz
IL _{RX}	Rx balun insertion loss differential mode $ S_{DS} $ without mismatch loss	Typical value given at 915 MHz		1.20	1.45	dB
IL _{TX}	HP Tx filter insertion loss $ S_{21} $ without mismatch loss	Typical value given at 915 MHz		0.80	1.00	dB
RL _{RX-ANT}	Rx balun input return loss differential mode $ S_{DD} $ on antenna	Typical value given at 915 MHz	14	19		dB
RL _{TX-ANT}	Tx filter output return loss $ S_{11} $ on antenna	Typical value given at 915 MHz	19	22		dB
¢ imb	RX balun phase imbalance				1.8	0
A _{imb}	RX balun amplitude imbalance				1.0	dB
		Attenuation at 2fo	24	38		
		Attenuation at 3fo	46	51		
		Attenuation at 4fo	44	48		
		Attenuation at 5fo	36	46		
Att _{TX}	Tx filter harmonic rejection levels $ S_{21} $	Attenuation at 6fo	35	51		dB
		Attenuation at 7fo	20	33		
		Attenuation at 8fo	24	36		
		Attenuation at 9fo	32	42		
		Attenuation at 10fo	28	38		

1.1 RF measurements (Rx balun)

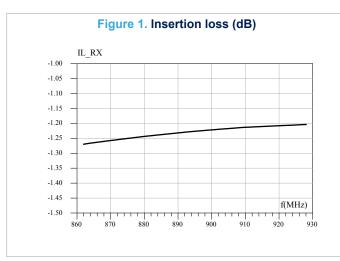
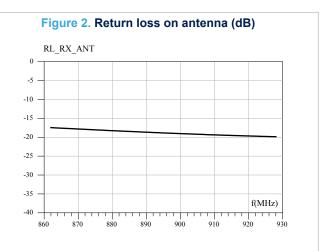
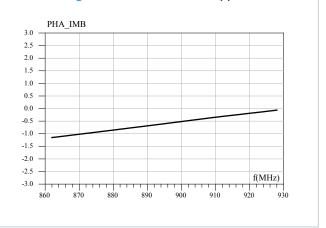
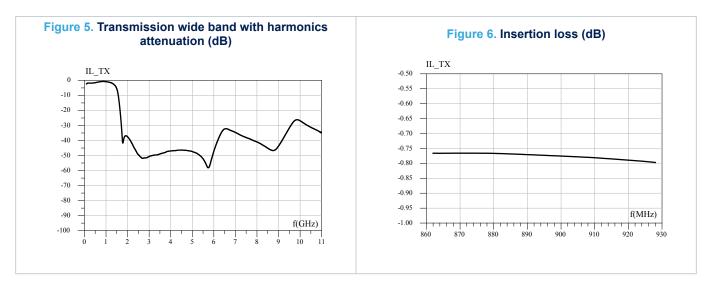
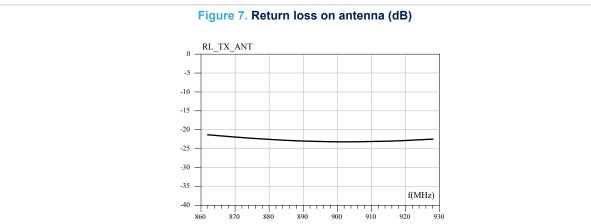
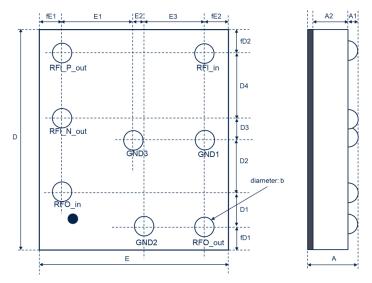


Figure 3. Amplitude imbalance (dB) AMP_IMB 1.50 1.25 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00 -1.25 f(MHz) -1.50 880 890 900 870 860 920 910 930


Figure 4. Phase imbalance (°)

1.2 RF measurements (Tx filter)



2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 CSPG 8 bumps package information

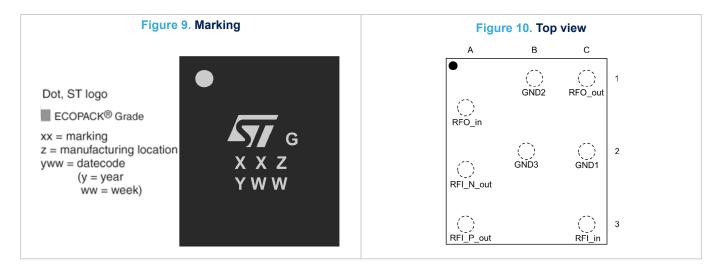


Figure 8. CSPG 8 bumps package outline (bottom view - bumps up) (in µm)

Table 4. CSPG 8 bumps dimensions (in µm)

Parameter	Min.	Тур.	Max.
A	580	630	680
A1	180	205	230
A2	380	400	420
b	230	255	280
D	2080	2130	2150
D1		340	
D2		500	
D3		210	
D4		630	
E	1780	1830	1880
E1		690	
E2		85	
E3		605	
fD1		225	
fD2		225	
fE1		225	
fE2		225	

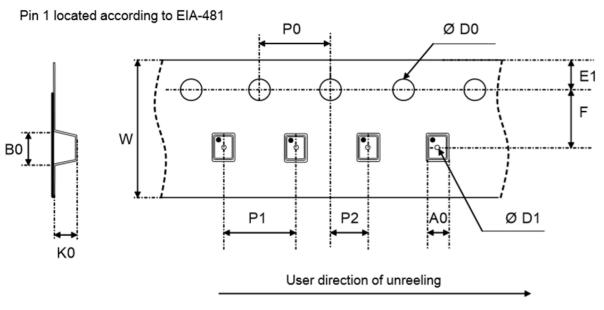

2.2 CSPG 8 bumps packing information

Table 5. Pads description top view (pads down)

Pad ref.	Pad name	Description		
A1	RFO_in	Tx filter input		
A2	RFI_N_out	Differential-N Rx balun output		
A3	RFI_P_out	Differential-P Rx balun output		
B1	GND2	Ground #2		
B2	GND3	Ground #3		
C1	RFO_out	Tx filter output		
C2	GND1	Ground #1		
C3	RFI_in	Single ended Rx balun input		

Figure 11. Tape and reel outline

Note:

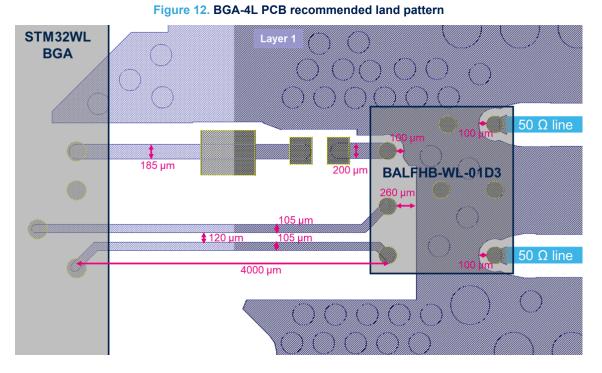
Pocket dimensions are not on scale Pocket shape may vary depending on package

Table 6. Tape and reel mechanical data

		Dimensions			
Ref	Millimeters				
	Min	Тур	Max		
A0	1.89	1.94	1.99		
B0	2.19	2.24	2.29		
Ø D0	1.40	1.50	1.60		
Ø D1	0.95	1.00	1.05		
E1	1.65	1.75	1.85		
F	3.45	3.50	3.55		
K0	0.70	0.75	0.80		
P0	3.90	4.00	4.10		
P1	3.90	4.00	4.10		
P2	1.95	2.00	2.05		
W	7.90	8.00	8.30		

Note:

•

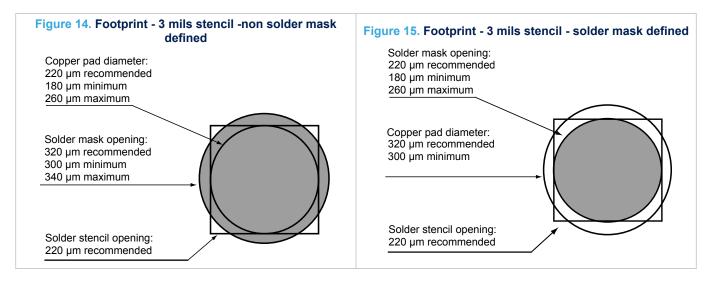

More packing information is available in the application note:

AN2348 Flip-Chip: "Package description and recommendations for use"

BALFHB-WL-01D3

PCB assembly recommendations 3

3.1 Land pattern


Layout example using STM32WL in BGA package / 4 layers PCB for high power mode.

Save Load	Presets •	3D			-7)	۲ 🔮 🗈	Layer	r Pairs 🔗 🔨
	Layer Name	Туре	Material	Thickness (mm)	Dielectric Material	Dielectric Constant	Pullback (mm)	Orientation
	Top Overlay	Overlay						
	Top Solder	Solder Mask/Co	Surface Material	0.002	Solder Resist	3.7		
	Top Layer	Signal	Copper	0.035				Тор
	Dielectric 1	Dielectric	Prepreg	0.108	1 x 2116	3.8		
	MidLayer 1	Signal	Copper	0.035				Not Allowed
	Dielectric 2	Dielectric	Core	0.71	FR4	5		
	MidLayer 2	Signal	Copper	0.035	1 C			Not Allowed
	Dielectric 3	Dielectric	Prepreg	0.108	1 x 2116	3.8		
	Bottom Layer	Signal	Copper	0.035				Bottom
	Bottom Solder	Solder Mask/Co	Surface Material	0.002	Solder Resist	3.7		
	Bottom Overlay	Overlay						
	<							
otal Thickness: 1.07001mm	Add Layer	Delete Layer	Move Up	Move Down		Drill Pa	irs Impedar	nce Calculation

Figure 13. BGA-4L PCB stack-up recommendations

3.2 Stencil opening design

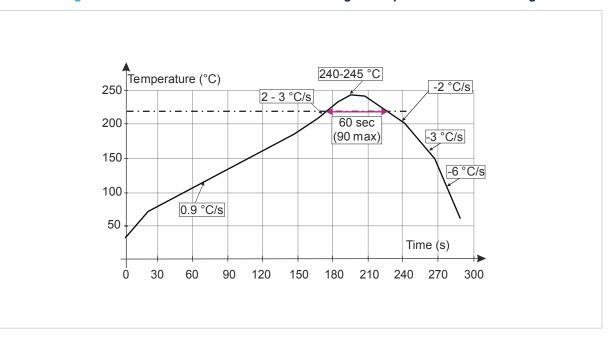
3.3 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Use solder paste with fine particles: powder particle size 20-38 µm.

3.4 Placement

- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ±0.05 mm is recommended.
- 4. 1.0 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- 6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.5 PCB design preference


- 1. To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

Note:

Note:

•

3.6 Reflow profile

Minimize air convection currents in the reflow oven to avoid component movement.

More information is available in the application note:

AN2348 Flip-Chip: "Package description and recommendations for use"

4 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
BALFHB-WL-01D3	W1	CSPG	3.9 mg	5000	Tape and reel

Revision history

Table 8. Document revision history

Date	Revision	Changes
14-Oct-2022	1	Initial release.

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Signal Conditioning category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

 PD0409J5050S2HF
 HHS-109-PIN
 AFS14A35-1591.50-T3
 JP510S
 LFB322G45SN1A504
 SF2159E
 FM-104-PIN
 CER0813B

 MAPDCC0005
 3A325
 BD0810N50100AHF
 DC0710J5005AHF
 DC2327J5005AHF
 LFL15869MTC1B787
 X3C19F1-20S

 CDBLB455KCAX39-B0
 RF1353C
 051157-0000
 PD0922J5050D2HF
 600S150FTRB
 1E1305-3
 1F1304-3S
 TP-103-PIN

 BD1222J50200AHF
 BD1722J50100AHF
 2450DP39K5400E
 BD0810J50150AHF
 BD1722J50200AHF
 DS-327-PIN
 MACP-008125

 CK07F0
 DS-329-PIN
 DS-313-PIN
 TP-104-PIN
 TP-101-PIN
 HH-128-PIN
 8594810000
 T-1000-N
 JP506S
 XC0900P-10S
 XC0900B-30S

 CHE1260-QAG
 11305-10
 5962-9091202MXA
 3A412S
 X3C06A4-03S
 B39000Z3410A4
 DSS-333-PIN
 PD2425J5050S2HF

 B39242B4360P810
 B39781B8005P810
 B39781B8005P810
 DS-313-PIN
 PD2425J5050S2HF