## $50 \Omega$ nominal input / conjugate match balun to SPIRIT1, with integrated harmonic filter

## Datasheet - production data



Figure 1. Pin coordinates (top view)


Figure 2. Application schematic (top view)


## Features

- $50 \Omega$ nominal input / conjugate match to SPIRIT1
- Low insertion loss
- Low amplitude imbalance
- Low phase imbalance
- Small footprint


## Benefits

- Very low profile (<670 $\mu \mathrm{m}$ )
- High RF performance
- RF BOM and area reduction


## Applications

- 868 MHz and 915 MHz impedance matched balun filter
- Optimized for SPIRIT1 sub GHz RFIC


## Description

STMicroelectronics BALF-SPI-01D3 is an ultra miniature balun. The BALF-SPI-01D3 integrates matching network and harmonics filters. Matching impedance has been customized for the SPIRIT1 ST transceiver.

The BALF-SPI-01D3 uses STMicroelectronics IPD technology on non-conductive glass substrate which optimize RF performance.

## 1 Characteristics

Table 1. Absolute maximum ratings (limiting values)

| Symbol | Parameter | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |
| $\mathrm{P}_{\text {IN }}$ | Input power RFIN |  | - | 20 | dBm |
| $V_{\text {ESD }}$ | ESD ratings human body model (JESD22-A114-C), all I/O one at a time while others connected to GND | 2000 | - |  | V |
|  | ESD ratings machine model, all I/O | 200 | - |  |  |
| $\mathrm{T}_{\mathrm{OP}}$ | Operating temperature (JESD22-A115-C), all I/O | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ |

Table 2. Impedances ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

| Symbol | Parameter | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |
| $Z_{\text {RX }}$ | Nominal differential RX balun impedance | - | match to SPIRIT1 | - | $\Omega$ |
| $\mathrm{Z}_{\text {TX }}$ | Nominal TX filter impedance |  |  |  |  |
| $\mathrm{Z}_{\text {ANT }}$ | Antenna impedance | - | 50 | - | $\Omega$ |

Table 3. RF performance ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

| Symbol | Parameter | Test condition | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| F | Frequency range (bandwidth) |  | 779 | 868 | 956 | MHz |
| S21 ${ }_{\text {RX-ANT }}$ | Insertion loss in bandwidth without mismatch loss (RX balun) |  |  | -1.7 | -2 | dB |
| S21 ${ }_{\text {TX-ANT }}$ | Insertion loss in bandwidth without mismatch loss (TX filter) |  |  | -1.4 | -2 | dB |
| S11 ${ }_{\text {ANT }}$ | Input return loss in bandwidth (RX balun) |  |  | -23 | -15 | dB |
| S11 ${ }_{\text {ANT }}$ | Input return loss in bandwidth (TX filter) |  |  | -15 | -12 | dB |
| $\phi_{\text {imb }}$ | Output phase imbalance (RX balun) |  | 5 | 10 | 15 | - |
| $\mathrm{A}_{\text {imb }}$ | Output amplitude imbalance (RX balun) |  |  | 0.35 | 0.8 | dB |
| Att | Harmonic levels (TX filter) | Attenuation at 2fo |  | -35 |  | dBm |
|  |  | Attenuation at 3fo |  | -40 |  |  |

### 1.1 RF measurement (Rx balun)



Figure 5. Phase imbalance ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )


Figure 6. Amplitude imbalance ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )


### 1.2 RF measurement (Tx filter)



Figure 9. Attenuation ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )


Figure 10. Return loss antenna ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )


## 2 Application information

Figure 11. Application board EVB (4 layers)


Figure 12. TX output measurements with BALF-SPI-01D3 at 868 MHz


Figure 13. TX output power measurements over frequency with BALF-SPI-01D3


Figure 14. Harmonic measurements at $P_{\text {out }}=10 \mathrm{dBm}$ with BALF-SPI-01D3


## 3 Package information

- Epoxy meets UL94, V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

### 3.1 Flip-Chip package information

Figure 15. Flip-Chip package outline


Table 4. Flip-Chip package mechanical data

| Parameter | Description | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| A | Bump height + substrate thickness | 0.590 | 0.650 | 0.710 | mm |
| A1 | Bump height |  | 0.200 |  | mm |
| A2 | Substrate thickness | 0.210 | 0.250 | 0.290 | mm |
| b | Bump diameter | 1.950 | 2.000 | 1.950 | mm |
| D | Y dimension of the die | 0.960 | 1.000 | 1.040 | mm |
| D1 | Y pitch | 0.460 | 0.500 | 0.540 | mm |
| D2 | Y pitch2 | 1.350 | 1.400 | 1.450 | mm |
| E | X dimension of the die | 0.790 | 0.820 | 0.850 | mm |
| E1 | X pitch |  | 0.295 |  | mm |
| fD1 | Distance from bump to edge of die on Y <br> axis |  | 0.195 |  | mm |
| fD2 | Distance from bump to edge of die on Y <br> axis |  |  | 0.05 | mm |
| ccc |  |  |  |  |  |

Figure 16. Recommended balun land pattern



Figure 19. Footprint - 5 mils stencil -non solder mask defined


Figure 20. Footprint - 5 mils stencil - solder mask defined


Figure 21. Marking


Figure 22. Flip Chip tape and reel specifications


Note: $\quad$ More information is available in the STMicroelectronics Application note:
AN2348 Flip-Chip: "Package description and recommendations for use"

## 4 Ordering information

Table 5. Ordering information

| Order code | Marking | Weight | Base Qty | Delivery mode |
| :---: | :---: | :---: | :---: | :---: |
| BALF-SPI-01D3 | SJ | 3.0 mg | 5000 | Tape and Reel |

## 5 Revision history

Table 6. Document revision history

| Date | Revision | Changes |
| :---: | :---: | :--- |
| 27-Aug-2013 | 1 | Initial release. |
| 03-Oct-2013 | 2 | Updated document title. Updated Table 1 with JESD22 references. |
| 15-May-2015 | 3 | Updated Figure 1 and Figure 15. Added Figure 19 and Figure 20. |
| 18-Sep-2015 | 4 | Updated Figure 15 and added Table 4. |
| 17-Nov-2015 | 5 | Updated Figure 2 and Figure 15. |

## IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics - All rights reserved

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C 1E13053 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 10017-3 TP-103-PIN BD1222J50200AHF

