Complementary low voltage transistor

Features

- Products are pre-selected in DC current gain

Application

- General purpose

Description

These epitaxial planar transistors are mounted in the SOT-32 plastic package. They are designed for audio amplifiers and drivers utilizing complementary or quasi-complementary circuits. The NPN types are the BD135 and BD139, and the complementary PNP types are the BD136 and BD140.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
BD135	BD135		
BD135-16	BD135-16		
BD136	BD136		
BD136-16	BD136-16		
BD139	BD139		Tube
BD139-10	SOT-32		
BD139-16	BD139-10		
BD140	BD139-16		
BD140-10			
BD140-16	BD140		

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 5
3 Package mechanical data 6
4 Revision history 8

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value				Unit
		NPN		PNP		
		BD135	BD139	BD136	BD140	
$\mathrm{V}_{\text {CBO }}$	Collector-base voltage ($\mathrm{I}_{\mathrm{E}}=0$)	45	80	-45	-80	V
$\mathrm{V}_{\text {CEO }}$	Collector-emitter voltage ($\mathrm{l}_{\mathrm{B}}=0$)	45	80	-45	-80	V
$\mathrm{V}_{\text {EBO }}$	Emitter-base voltage ($\mathrm{I}_{\mathrm{C}}=0$)	5		-5		V
I_{C}	Collector current	1.5		-1.5		A
I_{CM}	Collector peak current	3		-3		A
I_{B}	Base current	0.5		-0.5		A
$\mathrm{P}_{\text {TOT }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$	12.5				W
$\mathrm{P}_{\text {TOT }}$	Total dissipation at $\mathrm{T}_{\mathrm{amb}} \leq 25^{\circ} \mathrm{C}$	1.25				W
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150				${ }^{\circ} \mathrm{C}$
T_{j}	Max. operating junction temperature	150				${ }^{\circ} \mathrm{C}$

Table 3. Thermal data

Symbol	Parameter	Max value	Unit
$\mathrm{R}_{\text {thj-case }}$	Thermal resistance junction-case	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-amb }}$	Thermal resistance junction-ambient	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2 Electrical characteristics

($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Polarity	Test conditions	Value			Unit
				Min.	Typ.	Max.	
$\mathrm{I}_{\text {CBO }}$	Collector cut-off current ($\mathrm{l}_{\mathrm{E}}=0$)	NPN	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 0.1 \\ 10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		PNP	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=-30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=-30 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \hline-0.1 \\ & -10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {ebo }}$	Emitter cut-off current$\left(\mathrm{I}_{\mathrm{C}}=0\right)$	NPN	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$			10	$\mu \mathrm{A}$
		PNP	$\mathrm{V}_{\text {EB }}=-5 \mathrm{~V}$			-10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CEO(sus) }}{ }^{(1)}$	Collector-emitter sustaining voltage ($\mathrm{I}_{\mathrm{B}}=0$)	NPN	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA} \\ & \mathrm{BD} 135 \\ & \mathrm{BD} 139 \end{aligned}$	$\begin{aligned} & 45 \\ & 80 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		PNP	$\begin{aligned} & I_{C}=-30 \mathrm{~mA} \\ & \text { BD136 } \\ & \text { BD140 } \end{aligned}$	$\begin{aligned} & -45 \\ & -80 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{C E \text { (sat) }}{ }^{(1)}$	Collector-emitter saturation voltage	NPN	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~A}$			0.5	V
		PNP	$\mathrm{I}_{\mathrm{C}}=-0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.05 \mathrm{~A}$			-0.5	V
$V_{B E}{ }^{(1)}$	Base-emitter voltage	NPN	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}$			1	V
		PNP	$\mathrm{I}_{\mathrm{C}}=-0.5 \mathrm{~A}, \mathrm{~V}_{C E}=-2 \mathrm{~V}$			-1	V
$\mathrm{h}_{\mathrm{FE}}{ }^{(1)}$	DC current gain	NPN	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \\ & 25 \end{aligned}$		250	
		PNP	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}, \mathrm{~V}_{C E}=-2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-0.5 \mathrm{~A}, \mathrm{~V}_{C E}=-2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \\ & 25 \end{aligned}$		250	
$\mathrm{h}_{\mathrm{FE}}{ }^{(1)}$	$\mathrm{h}_{\text {FE }}$ groups	NPN	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V} \\ & \mathrm{BD} 139-10 \\ & \text { BD135-16/BD139-16 } \end{aligned}$	$\begin{gathered} 63 \\ 100 \end{gathered}$		$\begin{aligned} & 160 \\ & 250 \end{aligned}$	
		PNP	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-2 \mathrm{~V} \\ & \mathrm{BD} 140-10 \\ & \mathrm{BD} 136-16 / \mathrm{BD} 140-16 \end{aligned}$	$\begin{gathered} 63 \\ 100 \end{gathered}$		$\begin{aligned} & 160 \\ & 250 \end{aligned}$	

1. Pulsed: pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area
Figure 3. Derating

3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

SOT-32 (TO-126) MECHANICAL DATA

DIM.	mm.		
	MIN.	TYP	MAX.
A	2.4		2.9
B	0.64		0.88
B1	0.39		0.63
D	10.5	2.29	11.05
E	7.4	4.58	7.8
e	2.04		2.54
e1	4.07		5.08
L	15.3	3.8	16
P	2.9		3.2
Q	1	2.15	1.52
Q1		1.27	
H2			

4 Revision history

Table 5. Document revision history

Date	Revision	Changes
16-Sep-2001	4	
22-May-2008	5	Mechanical data has been updated.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15

