

## **BTA10 and BTB10 Series**

#### SNUBBERLESS™ & STANDARD

## 10A TRIACs

#### Table 1: Main Features

| Symbol                             | Value       | Unit |
|------------------------------------|-------------|------|
| I <sub>T(RMS)</sub>                | 10          | А    |
| V <sub>DRM</sub> /V <sub>RRM</sub> | 600 and 800 | V    |
| I <sub>GT (Q1</sub> )              | 25 to 50    | mA   |

#### DESCRIPTION

Available either in through-hole or surface-mount packages, the **BTA10** and **BTB10** triac series is suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits... or for phase control operation in light dimmers, motor speed controllers,...

The snubberless version (W suffix) is specially recommended for use on inductive loads, thanks to their high commutation performances.

By using an internal ceramic pad, the BTA series provides voltage insulated tab (rated at  $2500V_{RMS}$ ) complying with UL standards (File ref.: E81734).

| Go                            | )<br>1              |
|-------------------------------|---------------------|
| A1<br>A2<br>G                 | A2<br>A1<br>A2<br>G |
| TO-220AB Insulated<br>(BTA10) | TO-220AB<br>(BTB10) |

#### **Table 2: Order Codes**

| Part Number   | Marking             |
|---------------|---------------------|
| BTA10-xxxxxRG | See page table 8 on |
| BTB10-xxxxRG  | page 6              |

| Symbol                             | Paramet                                                                            | er                             |                        | Value                                       | Unit |
|------------------------------------|------------------------------------------------------------------------------------|--------------------------------|------------------------|---------------------------------------------|------|
|                                    | RMS on-state current (full sine                                                    | TO-220AB $T_c = 105^{\circ}$   |                        | 10                                          | А    |
| I <sub>T(RMS)</sub>                | wave)                                                                              | TO-220AB Ins.                  | $T_c = 95^{\circ}C$    | 10                                          | A    |
| Irou                               | Non repetitive surge peak on-state                                                 | F = 50 Hz                      | t = 20 ms              | 100                                         | А    |
| ITSM                               | current (full cycle, $T_j$ initial = 25°C)                                         | F = 60 Hz                      | t = 16.7 ms            | 105                                         | ~    |
| l²t                                | I <sup>2</sup> t Value for fusing                                                  | t <sub>p</sub> = 10 ms         |                        | 55                                          | A²s  |
| dl/dt                              | Critical rate of rise of on-state current $I_G$ = 2 x $I_{GT}$ , $t_r \leq$ 100 ns | F = 120 Hz                     | T <sub>j</sub> = 125°C | 50                                          | A/µs |
| V <sub>DSM</sub> /V <sub>RSM</sub> | Non repetitive surge peak off-state voltage                                        | t <sub>p</sub> = 10 ms         | T <sub>j</sub> = 25°C  | V <sub>DSM</sub> /V <sub>RSM</sub><br>+ 100 | V    |
| I <sub>GM</sub>                    | Peak gate current $t_p = 20 \ \mu s$ $T_j = 125^{\circ}C$                          |                                | 4                      | А                                           |      |
| P <sub>G(AV)</sub>                 | Average gate power dissipation $T_j = 125^{\circ}C$                                |                                | 1                      | W                                           |      |
| T <sub>stg</sub><br>T <sub>j</sub> | Storage junction temperature range<br>Operating junction temperature range         | - 40 to + 150<br>- 40 to + 125 | °C                     |                                             |      |

## **Table 3: Absolute Maximum Ratings**

## **BTA10 and BTB10 Series**

## Tables 4: Electrical Characteristics ( $T_j = 25^{\circ}C$ , unless otherwise specified)

## SNUBBERLESS (3 quadrants)

| Symbol              | Symbol Test Conditions                                                           |          |      | BTA10 | BTB10 | Unit |
|---------------------|----------------------------------------------------------------------------------|----------|------|-------|-------|------|
| Symbol              | Test conditions                                                                  | Quadrant |      | CW    | BW    | Onit |
| I <sub>GT</sub> (1) | $V_{D} = 12 V R_{I} = 33 \Omega$                                                 | -    -   | MAX. | 35    | 50    | mA   |
| V <sub>GT</sub>     | vD = 12 v 11 = 00 32                                                             | -    -   | MAX. | 1     | .3    | V    |
| V <sub>GD</sub>     | $V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_j = 125^{\circ}\text{C}$ I - II - |          | MIN. | 0.2   |       | V    |
| I <sub>H</sub> (2)  | I <sub>T</sub> = 500 mA                                                          |          | MAX. | 35    | 50    | mA   |
| l <sub>l</sub>      | I <sub>G</sub> = 1.2 I <sub>GT</sub>                                             | -        | MAX. | 50    | 70    | mA   |
| 'L                  |                                                                                  | II       |      | 60    | 80    |      |
| dV/dt (2)           | $V_D = 67 \% V_{DRM}$ gate open $T_j = 125^{\circ}C$                             |          | MIN. | 500   | 1000  | V/µs |
| (dl/dt)c (2)        | Without snubber $T_j = 125^{\circ}C$                                             |          | MIN. | 5.5   | 9.0   | A/ms |

## Standard (4 quadrants)

| Symbol              | Test Conditions                                                      | ons Quadrant |      | BTA10 | / BTB10 | Unit |
|---------------------|----------------------------------------------------------------------|--------------|------|-------|---------|------|
| Symbol              |                                                                      |              | С    | В     | Onn     |      |
| I <sub>GT</sub> (1) | lor (1)                                                              |              | MAX. | 25    | 50      | mA   |
| ur ( )              | $V_D = 12 V$ $R_L = 33 \Omega$                                       | IV           |      | 50    | 100     |      |
| V <sub>GT</sub>     |                                                                      | ALL          | MAX. | 1     | .3      | V    |
| V <sub>GD</sub>     | $V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_j = 125^{\circ}C$ ALL |              | MIN. | 0.2   |         | V    |
| I <sub>H</sub> (2)  | I <sub>T</sub> = 500 mA                                              |              | MAX. | 25    | 50      | mA   |
| lı                  | $I_{G} = 1.2 I_{GT}$                                                 | I - III - IV | MAX. | 40    | 50      | mA   |
| 'L                  |                                                                      | II           |      | 80    | 100     |      |
| dV/dt (2)           | $V_D = 67 \% V_{DRM}$ gate open $T_j = 125^{\circ}C$                 |              | MIN. | 200   | 400     | V/µs |
| (dV/dt)c (2)        | $(dI/dt)c = 4.4 \text{ A/ms}$ $T_j = 125^{\circ}$                    | °C           | MIN. | 5     | 10      | V/µs |

## **Table 5: Static Characteristics**

| Symbol              | Test Conditions                                |                        |        | Value | Unit |
|---------------------|------------------------------------------------|------------------------|--------|-------|------|
| V <sub>T</sub> (2)  | I <sub>TM</sub> = 14 A t <sub>p</sub> = 380 μs | $T_j = 25^{\circ}C$    | MAX.   | 1.55  | V    |
| V <sub>t0</sub> (2) | Threshold voltage                              | T <sub>j</sub> = 125°C | MAX.   | 0.85  | V    |
| R <sub>d</sub> (2)  | Dynamic resistance                             | T <sub>j</sub> = 125°C | MAX.   | 40    | mΩ   |
| I <sub>DRM</sub>    | V <sub>DRM</sub> = V <sub>RRM</sub>            | $T_j = 25^{\circ}C$    | MAX. 5 |       | μA   |
| I <sub>RRM</sub>    |                                                | $T_j = 125^{\circ}C$   |        | 1     | mA   |

Note 1: minimum  $I_{GT}$  is guaranted at 5% of  $I_{GT}$  max.

Note 2: for both polarities of A2 referenced to A1.

| Symbol                                     | Paramete              | Parameter          |      |      |
|--------------------------------------------|-----------------------|--------------------|------|------|
| B                                          | Junction to case (AC) | TO-220AB           | 1.5  | °C/W |
| R <sub>th(j-c)</sub> Junction to case (AC) | TO-220AB Insulated    | 2.4                | 0/11 |      |
| Burn                                       | lunction to ambient   | TO-220AB           | 60   | °C/W |
| R <sub>th(j-a)</sub>                       | Junction to ambient   | TO-220AB Insulated | 00   | 0/11 |

 Table 6: Thermal resistance

Figure 1: Maximum power dissipation versus RMS on-state current (full cycle)

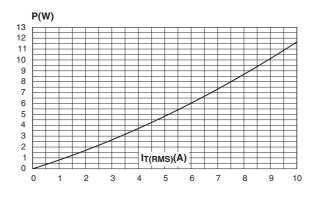



Figure 3: Relative variation of thermal impedance versus pulse duration

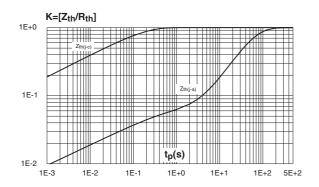
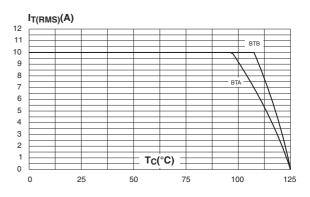
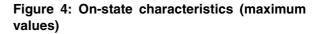
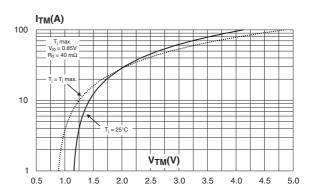






Figure 2: RMS on-state current versus case temperature (full cycle)







57

# Figure 5: Surge peak on-state current versus number of cycles

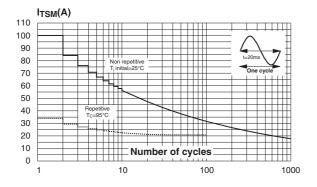



Figure 7: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values)

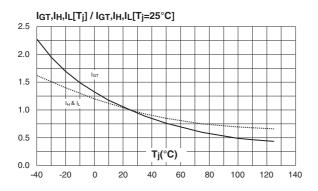



Figure 9: Relative variation of critical rate of decrease of main current versus junction temperature

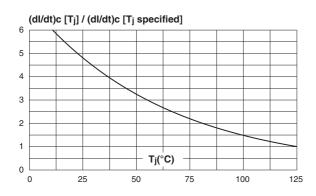



Figure 6: Non-repetitive surge peak on-state current for a sinusoidal pulse with width  $t_p < 10$  ms and corresponding value of  $l^2t$ 

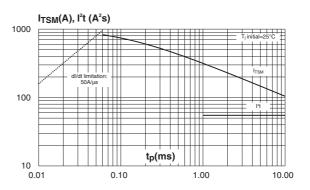
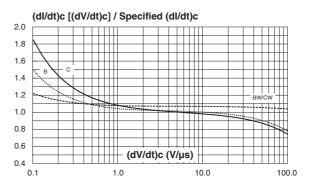
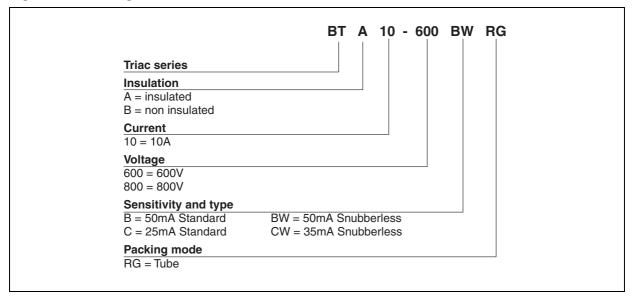





Figure 8: Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values)



**47/** 

Figure 10: Ordering Information Scheme



## **Table 7: Product Selector**

| Part Number     | Voltag | Voltage (xxx) |                                 | Туре        |          |
|-----------------|--------|---------------|---------------------------------|-------------|----------|
| r art Number    | 600 V  | 800 V         | <ul> <li>Sensitivity</li> </ul> | туре        | Package  |
| BTA/BTB10-xxxB  | Х      | Х             | 50 mA                           | Standard    | TO-220AB |
| BTA/BTB10-xxxBW | Х      | Х             | 50 mA                           | Snubberless | TO-220AB |
| BTA/BTB10-xxxC  | Х      | Х             | 25 mA                           | Standard    | TO-220AB |
| BTA/BTB10-xxxCW | Х      | Х             | 35 mA                           | Snubberless | TO-220AB |

BTB: non insulated TO-220AB package

|          |                      |      |       |         | DIMEN | SIONS |        |       |
|----------|----------------------|------|-------|---------|-------|-------|--------|-------|
|          |                      | REF. | Mi    | llimete | rs    |       | Inches |       |
|          |                      |      | Min.  | Тур.    | Max.  | Min.  | Тур.   | Max.  |
| В        | с                    | Α    | 15.20 |         | 15.90 | 0.598 |        | 0.625 |
|          | b2                   | a1   |       | 3.75    |       |       | 0.147  |       |
|          |                      | a2   | 13.00 |         | 14.00 | 0.511 |        | 0.551 |
|          | F                    | В    | 10.00 |         | 10.40 | 0.393 |        | 0.409 |
|          |                      | b1   | 0.61  |         | 0.88  | 0.024 |        | 0.034 |
| A        |                      | b2   | 1.23  |         | 1.32  | 0.048 |        | 0.051 |
| 14       |                      | С    | 4.40  |         | 4.60  | 0.173 |        | 0.181 |
|          | c2                   | c1   | 0.49  |         | 0.70  | 0.019 |        | 0.027 |
|          | <b>←→</b> _          | c2   | 2.40  |         | 2.72  | 0.094 |        | 0.107 |
| l2a2     |                      | е    | 2.40  |         | 2.70  | 0.094 |        | 0.106 |
|          |                      | F    | 6.20  |         | 6.60  | 0.244 |        | 0.259 |
|          | M                    | ØI   | 3.75  |         | 3.85  | 0.147 |        | 0.151 |
| <br>← b1 | • <u>→</u> <u>c1</u> | 14   | 15.80 | 16.40   | 16.80 | 0.622 | 0.646  | 0.661 |
|          |                      | L    | 2.65  |         | 2.95  | 0.104 |        | 0.116 |
|          |                      | 12   | 1.14  |         | 1.70  | 0.044 |        | 0.066 |
|          |                      | 13   | 1.14  |         | 1.70  | 0.044 |        | 0.066 |
|          |                      | М    |       | 2.60    |       |       | 0.102  |       |

## Figure 11: TO-220AB (insulated and non insulated) Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

## **Table 8: Ordering Information**

| Ordering type     | Marking         | Package  | Weight | Base qty | Delivery mode |
|-------------------|-----------------|----------|--------|----------|---------------|
| BTA/BTB10-xxxyzRG | BTA/BTB10-xxxyz | TO-220AB | 2.3 g  | 50       | Tube          |

**Note:** xxx = voltage, yy = sensitivity, z = type

## **Table 9: Revision History**

| Date        | Revision | Description of Changes                                                        |
|-------------|----------|-------------------------------------------------------------------------------|
| Apr-2002    | 5A       | Last update.                                                                  |
| 13-Feb-2006 | 6        | TO-220AB delivery mode changed from bulk to tube.<br>ECOPACK statement added. |

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

57

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

 T2035H-6G
 BT137-600-0Q
 Z0409MF0AA2
 Z0109NA 2AL2
 ACST1635T-8FP
 BCR20RM-30LA#B00
 CMA60MT1600NHR
 NTE5611

 NTE5612
 NTE5613
 NTE5623
 NTE5629
 NTE5638-08
 NTE5688
 NTE5690
 BTA312-600CT.127
 T1210T-8G-TR

 T2535T-8I
 T2535T-8T
 TN4050-12WL
 MAC4DLM-1G
 BT137-600E,127
 BT137X-600D
 BT148W-600R,115
 BT258-500R,127
 BTA08 

 800BW3G
 BTA140-800,127
 BTA30-600CW3G
 BTA30-600CW3G
 BTB08-800BW3G
 BTB16-600CW3G
 BTB16-600CW3G

 Z0410MF0AA2
 Z0109MN,135
 T825T-6I
 T1635T-6I
 T1220T-6I
 NTE5638
 TYN612MRG
 TYN1225RG
 TPDV840RG
 ACST1235-8FP

 ACS302-6T3-TR
 BT134-600D,127
 BT136X-600E,127
 BT139X-800,127
 BTA04-700SRG