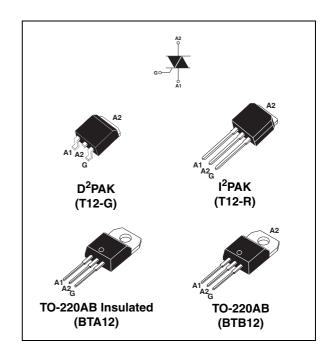


BTA12, BTB12, T12xx

12 A Snubberless™, logic level and standard triacs

Features

- Medium current triac
- Low thermal resistance with clip bonding
- Low thermal resistance insulation ceramic for insulated BTA
- High commutation (4Q) or very high commutation (3Q) capability
- BTA series UL1557 certified (File ref: 81734)
- Packages are RoHS (2002/95/EC) compliant


Applications

ON/OFF or phase angle function in applications such as static relays, light dimmers and appliance motors speed controllers.

The snubberless versions (BTA/BTB...W and T12 series) are especially recommended for use on inductive loads, because of their high commutation performances. The BTA series provides an insulated tab (rated at 2500 V RMS).

Description

Available either in through-hole or surface-mount packages, the **BTA12**, **BTB12** and **T12xx** triac series is suitable for general purpose mains power AC switching.

Order code

See Ordering information on page 11

Table 1. Device summary

Symbol	Parameter	T12xx	BTA12 ⁽¹⁾	BTB12
I _{T(RMS)}	RMS on-state current	12	12	12
V _{DRM} /V _{RRM}	Repetitive peak off-state voltage	600/800	600/800	600/800
I _{GT} (Snubberless)	Triggering gate current	10/35/50	5/10/35/50	5/10/35/50
I _{GT} (Standard)	Triggering gate current	-	35/50	35/50

^{1.} Insulated

TM: Snubberless is a trademark of STMicroelectronics

1 Characteristics

Table 2. Absolute maximum ratings

Symbol	Parame	eter		Value	Unit	
I _{T(RMS)}	RMS on-state current (full sine wave)	10-220AD		12	А	
- 7	(iuii sirie wave)	TO-220AB Ins.	T _C = 90° C			
1.	Non repetitive surge peak on-state	F = 50 Hz	t = 20 ms	120	Α	
I _{TSM}	current (full cycle, T _j initial = 25° C)	F = 60 Hz	t = 16.7 ms	126	A	
I ² t	I ² t Value for fusing	t _p = 10 ms		78	A ² s	
dI/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$	F = 120 Hz	T _j = 125° C	50	A/μs	
V _{DSM} /V _{RSM}	Non repetitive surge peak off-state voltage	t _p = 10 ms	T _j = 25° C	V _{DRM} /V _{RRM} + 100	V	
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 125° C	4	Α	
$P_{G(AV)}$	Average gate power dissipation $T_j = 125^{\circ} C$		1	W		
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	°C	

Table 3. Electrical characteristics ($T_j = 25^{\circ}C$, unless otherwise specified) Snubberless and logic level (3 quadrants)

Symbol	Test conditions	Oughent			T12xx		E	BTA12	BTB1	2	Heit
Symbol	Test conditions	Quadrant		T1210	T1235	T1250	TW	sw	CW	BW	Unit
I _{GT} ⁽¹⁾	V _D = 12 V	1 - 11 - 111	MAX.	10	35	50	5	10	35	50	mA
V _{GT}	$R_L = 30 \Omega$	1 - 11 - 111	MAX.				1.3				V
V _{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_j = 125^{\circ} \text{ C}$	1 - 11 - 111	MIN.			(0.2				V
I _H ⁽²⁾	I _T = 100 mA		MAX.	15	35	50	10	15	35	50	mA
IL	I _G = 1.2 I _{GT}	1 - 111	MAX.	25	50	70	10	25	50	70	mA
"L	IG - 1.2 IGT	II	WAX.	30	60	80	15	30	60	80	ША
dV/dt ⁽²⁾	$V_D = 67 \text{ %}V_{DRM} \text{ ga}$ $T_j = 125^{\circ} \text{ C}$	ite open	MIN.	40	500	1000	20	40	500	1000	V/µs
	$(dV/dt)c = 0.1 V/\mu s$ $T_j = 125^{\circ} C$			6.5			3.5	6.5			
(dl/dt)c (2)	(dV/dt)c = 10 V/ μ s T _j = 125° C		MIN.	2.9			1	2.9			A/ms
	Without snubber T_j = 125° C				6.5	12			6.5	12	

^{1.} Minimum I_{GT} is guaranted at 5% of I_{GT} max

^{2.} for both polarities of A2 referenced to A1

Table 4. Electrical characteristics ($T_j = 25$ °C, unless otherwise specified) standard (4 quadrants)

Cumbal	Symbol Test Conditions			BTA12 / BTB12		Unit
Symbol			Quadrant		В	Oill
I _{GT} ⁽¹⁾	$V_D = 12 \text{ V}$ $R_L = 30 \Omega$	I - II - III IV	MAX.	25 50	50 100	mA
V _{GT}	V _{GT}		MAX.	1	.3	V
V _{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_j = 125^{\circ} \text{ C}$ ALL		MIN.	0.2		٧
I _H ⁽²⁾	I _T = 500 mA		MAX.	25	50	mA
IL	I _G = 1.2 I _{GT}	I - III - IV	MAX.	40	50	mA
"L	IG = 1.2 IGT	II	IVIAA.	80	100	IIIA
dV/dt (2)	$V_D = 67\% V_{DRM}$ gate open $T_j = 125^{\circ} C$		MIN.	200	400	V/µs
(dV/dt)c (2)	$(dI/dt)c = 5.3 \text{ A/ms}$ $T_j = 125^{\circ} \text{ C}$		MIN.	5	10	V/µs

^{1.} Minimum $I_{\mbox{\scriptsize GT}}$ is guaranted at 5% of $I_{\mbox{\scriptsize GT}}$ max.

Table 5. Static characteristics

Symbol	Test	Test conditions			Unit
$V_T^{(1)}$	$I_{TM} = 17 \text{ A}$ $t_p = 380 \mu\text{s}$	T _j = 25° C	MAX.	1.55	V
V _{t0} (1)	Threshold voltage	T _j = 125° C	MAX.	0.85	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 125° C	MAX.	35	mΩ
I _{DRM}	V - V	T _j = 25° C	MAY	5	μΑ
I_{RRM}	$V_{DRM} = V_{RRM}$	$_{M} = V_{RRM}$ $T_{j} = 125^{\circ} C$ MAX.		1	mA

^{1.} for both polarities of A2 referenced to A1

Table 6. Thermal resistance

Symbol	Parameter			Value	Unit
В	Junction to case (AC)		I ² PAK / D ² PAK / TO-220AB	1.4	°C/W
R _{th(j-c)}	Junction to case (AC)		TO-220AB insulated	2.3	C/VV
	Junction to ambient	$S^{(1)} = 1 \text{ cm}^2$	D ² PAK	45	
R _{th(j-a)}			TO-220AB / I ² PAK TO-220AB insulated	60	°C/W

^{1.} Copper surface under tab.

^{2.} for both polarities of A2 referenced to A1.

Figure 1. Maximum power dissipation versus Figure 2. RMS on-state current versus case temperature (full cycle)

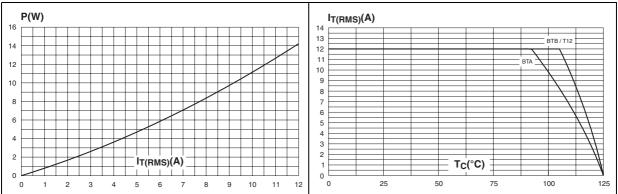


Figure 3. RMS on-state current versus ambient temperature (printed circuit board FR4, copper thickness: 35µm) (full cycle)

Figure 4. Relative variation of thermal impedance versus pulse duration

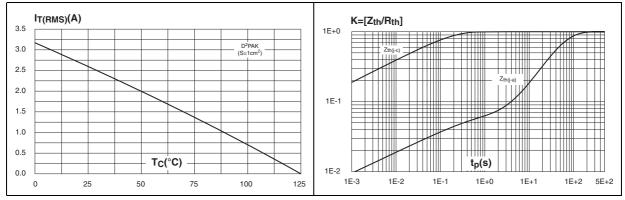


Figure 5. On-state characteristics (maximum Figure 6. Surge peak on-state current versus values)

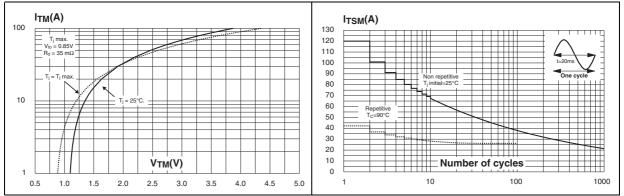
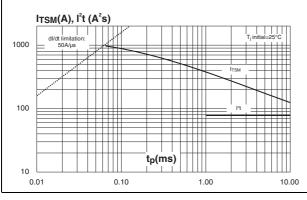



Figure 7. Non-repetitive surge peak on-state Figure 8. current for a sinusoidal pulse with width $t_p < 10 \text{ ms}$ and corresponding value of I^2t

igure 8. Figure 8: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values)

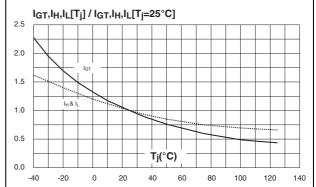
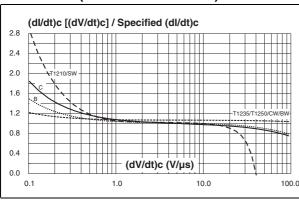



Figure 9. Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values) (BW/CW/T1210/T1235)

Figure 10. Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values) (TW)

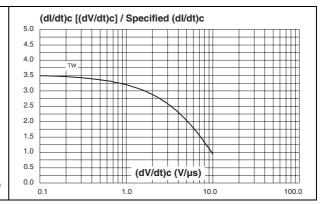
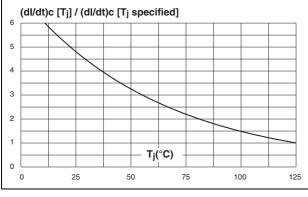
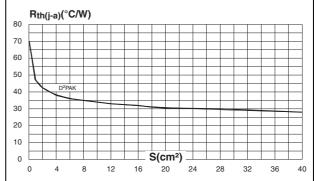




Figure 11. Relative variation of critical rate of Figure 12. decrease of main current versus junction temperature

 D²PAK thermal resistance junction to ambient versus copper surface under tab (printed circuit board FR4, copper thickness: 35 μm)

2 Ordering information scheme

Figure 13. BTA12 and BTB12 series

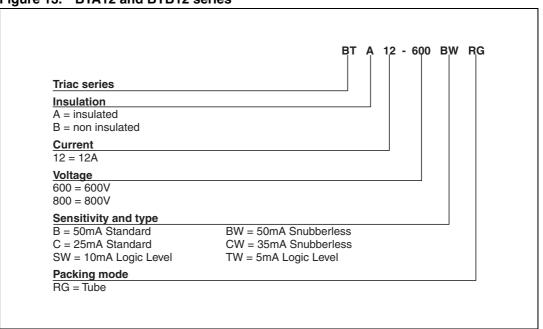


Figure 14. T12xx series

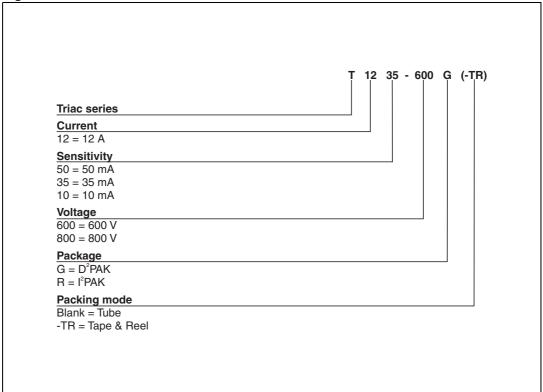


Table 7. Product selector

Order code ⁽¹⁾	Voltage (xxx)		Consitivity	Type	Package	
Order code()	600 V 800 V		Sensitivity	Туре		
BTA/BTB12-xxxBRG	Х	Х	50 mA	Standard	TO-220AB	
BTA/BTB12-xxxBWRG	Х	Х	50 mA	Snubberless	TO-220AB	
BTA/BTB12-xxxCRG	Х	Х	25 mA	Standard	TO-220AB	
BTA/BTB12-xxxCWRG	Х	Х	35 mA	Snubberless	TO-220AB	
BTA/BTB12-xxxSWRG	Х	Х	10 mA	Logic Level	TO-220AB	
BTA/BTB12-xxxTWRG	Х	Х	5 mA	Logic Level	TO-220AB	
T1210-800G	-	Х	10 mA	Logic Level	D ² PAK	
T1235-xxxG	Х	Х	35 mA	Snubberless	D ² PAK	
T1235-xxxR	Х	Х	35 mA	Snubberless	I ² PAK	
T1250-600G	Х	-	50 mA	Snubberless	D ² PAK	

^{1.} BTB: non insulated TO-220AB package

3 Packaging information

Epoxy meets UL94, V0

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Table 8. D²PAK dimensions

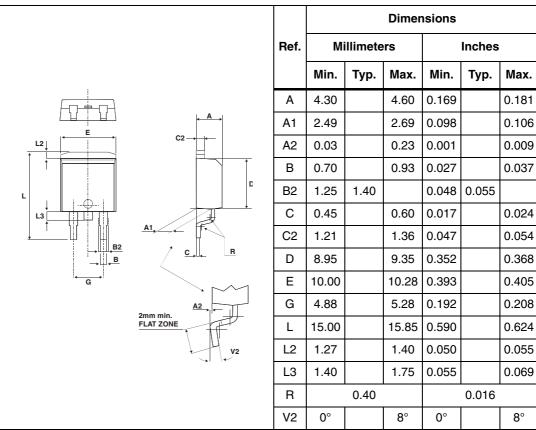


Figure 15. Footprint (dimensions in mm)

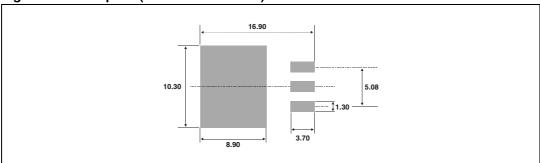
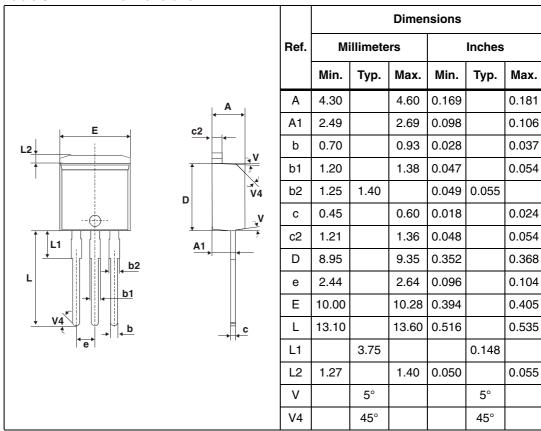



Table 9. I²PAK dimensions

Dimensions Ref. Millimeters Inches Min. Тур. Max. Min. Тур. Max. 15.20 15.90 0.598 0.625 0.147 a1 3.75 В a2 13.00 14.00 0.511 0.551 Ø١ В 10.00 10.40 0.393 0.409 ÎL b1 0.61 0.88 0.024 0.034 1.23 0.051 b2 1.32 0.048 14 С 4.40 4.60 0.173 0.181 13 с1 0.49 0.70 0.019 0.027 c2 c2 2.40 2.72 0.094 0.107 2.40 2.70 0.094 0.106 е F 6.20 6.60 0.244 0.259 ØΙ 3.75 3.85 0.147 0.151 0.661 14 15.80 16.40 16.80 0.622 0.646 L 2.65 2.95 0.104 0.116 12 1.14 0.044 0.066 1.70 13 1.14 1.70 0.044 0.066 Μ 2.60 0.102

Table 10. TO-220AB dimensions (insulated and non-insulated)

4 Ordering information

Table 11. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
BTA/BTB12-xxxyzRG	BTA/BTB12-xxxyz	TO-220AB	2.3 g	50	Tube
T1210-xxxG-TR	T1210-xxxG	D ² PAK	1.5 g	1000	Tape and reel
T1235-xxxG	T1235xxxG	D ² PAK	150	50	Tube
T1235-xxxG-TR	T1235xxxG	DIFAN	1.5 g	1000	Tape and reel
T1235-xxxR	T1235-xxxR	I ² PAK	1.5 g	50	Tube
T1250-xxxG-TR	T1250xxxG	D ² PAK	1.5 g	1000	Tape and reel

Note: xxx = voltage, y = sensitivity, z = type

5 Revision history

Table 12. Revision history

Date	Revision	Changes
Sep-2002	6A	Last update.
25-Mar-2005	7	 I²PAK package added. TO-220AB delivery mode changed from bulk to tube.
27-May-2005	8	T1210 added
28-Sep-2007	9	Reformatted to current standards. T1250 added

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A

NTE5629 NTE5688 CTB08-400CW D31410 T2535T-8I BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E

BT136D BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127

MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP

BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608

NTE5609 NTE5656 NTE56020