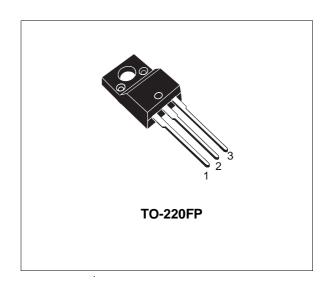
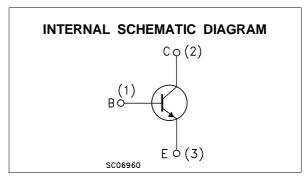


BUL1203EFP

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING


APPLICATIONS


■ ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING (277 V HALF BRIDGE AND 120 V PUSH-PULL TOPOLOGIES)

DESCRIPTION

The BUL1203EFP is a new device manufactured using Diffused Collector technology to enhance switching speeds and tight hFE range while maintaining a wide RBSOA.

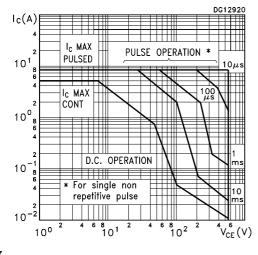
Thanks to his structure it has an intrinsic ruggedness which enables the transistor to withstand a high collector current level during Breakdown condition, without using the transil protection usually necessary in typical converters for lamp ballast.

ABSOLUTE MAXIMUM RATINGS

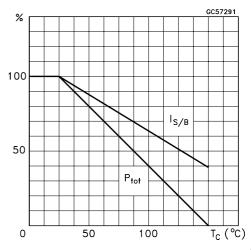
Symbol	Parameter	Value	Unit	
V_{CBO}	Collector-BaseVoltage (I _E = 0)	1200	V	
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0) 1200		V	
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	550	V	
V _{EBO}	Emitter-Base Voltage (I _C = 0)	9	V	
Ic	Collector Current	5	Α	
I _{CM}	Collector Peak Current (t _p < 5 ms)	8	Α	
I_{B}	Base Current	2	Α	
I_{BM}	Base Peak Current (t _p < 5 ms)	4	Α	
P _{tot}	Total Dissipation at T _c = 25 °C	36	W	
V _{isol}	Insulation Withstand Voltage (RMS) from All Three Leads to Exernal Heatsink	1500	V	
T_{stg}	Storage Temperature	-65 to 150	°C	
Tj	Max. Operating Junction Temperature	150	°C	

November 2003 1/7

THERMAL DATA

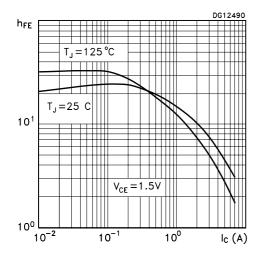

R _{thj-case}	Thermal Resistance Junction-case	Max	3.47	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	°C/W

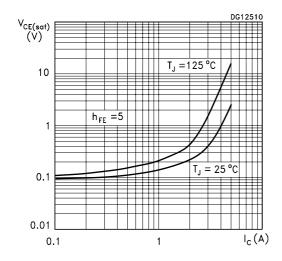
ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)


Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1200 V				100	μΑ
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 550 V				100	μΑ
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	L = 25 mH	550			V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA		9			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 1 A I _C = 2 A I _C = 3 A	I _B = 0.2 A I _B = 0.4 A I _B = 1 A			0.5 0.7 1.5	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 2 A I _C = 3 A	I _B = 0.4 A I _B = 1 A			1.5 1.5	V
h _{FE} *	DC Current Gain	I _C = 1 mA I _C = 10 mA I _C = 0.8 A I _C = 2 A	~-	10 10 14 9		32 28	
t _{on} t _s t _f	RESISTIVE LOAD Turn-on Time Storage Time Fall Time	I _C = 2 A I _{B2} = -0.8 A V _{CC} = 150 V	$I_{B1} = 0.4 \text{ A}$ $tp = 30 \mu s$ (see figure 2)		2.5 0.2	0.5 3.0 0.3	μs μs μs
Ear	Repetitive Avalanche Energy	L = 2 mH $V_{CC} = 50 \text{ V}$ (see figure 3)	C = 1.8 nF V _{BE} = -5 V	6			mJ

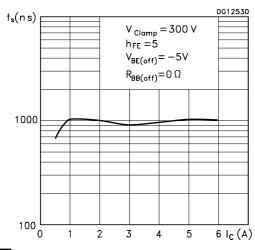
^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

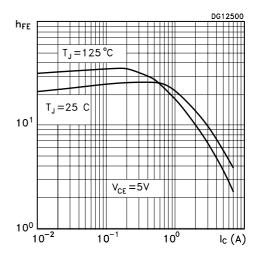
Safe Operating Area

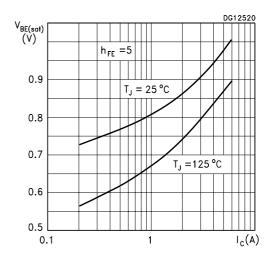

Derating Curve

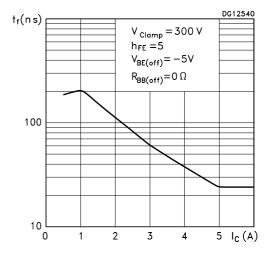

47/

2/7


DC Current Gain


Collector-Emitter Saturation Voltage


Inductive Load Storage Time


DC Current Gain

Base-Emitter Saturation Voltage

Inductive Load Fall Time

477

Reverse Biased Safe Operating Area

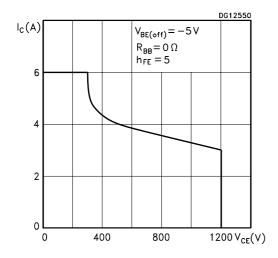


Figure 1: Inductive Load Switching Test Circuit

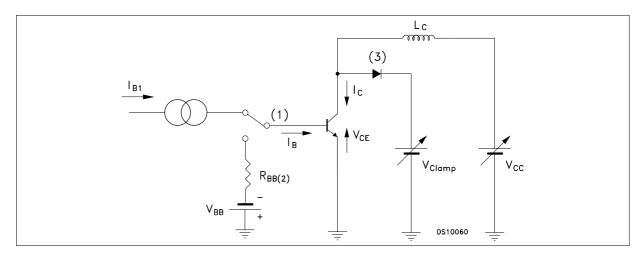
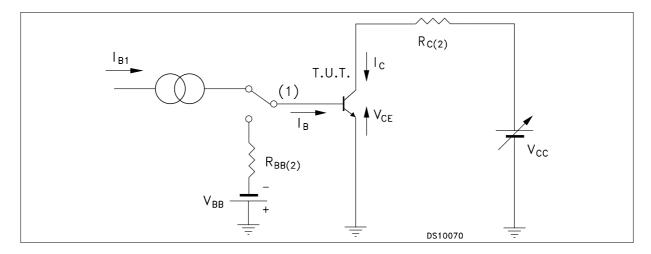
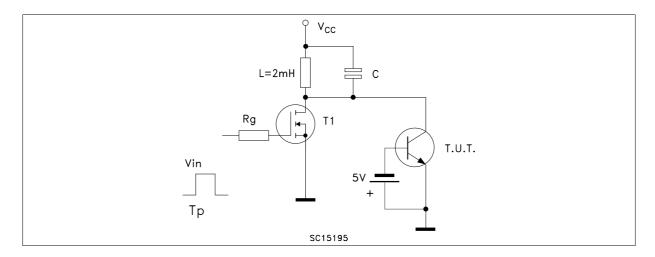




Figure 2: Resistive Load Switching Test Circuit

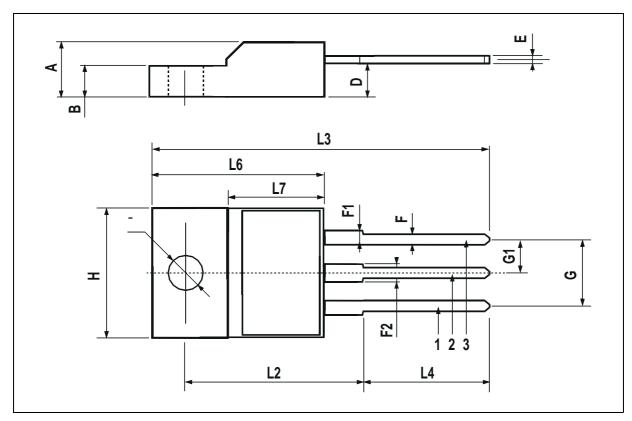

4/7

Figure 3: Energy Rating Test Circuit

TO-220FP MECHANICAL DATA

DIM.	mm			inch			
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.4		4.6	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
Е	0.45		0.7	0.017		0.027	
F	0.75		1	0.030		0.039	
F1	1.15		1.7	0.045		0.067	
F2	1.15		1.7	0.045		0.067	
G	4.95		5.2	0.195		0.204	
G1	2.4		2.7	0.094		0.106	
Н	10		10.4	0.393		0.409	
L2		16			0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.8		10.6	0.385		0.417	
L6	15.9		16.4	0.626		0.645	
L7	9		9.3	0.354		0.366	
Ø	3		3.2	0.118		0.126	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2003 STMicroelectronics – All Rights reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460
2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM
2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E
US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R
MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E
NSV40301MZ4T1G NTE101 NTE13