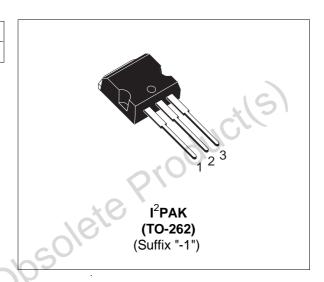


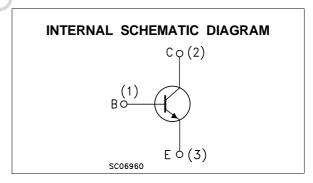
BULB128-1

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

Ordering Code	Marking	Shipment		
BULB128-1	BULB128	Tube		

- STMicroelectronics PREFERRED SALESTYPE
- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- THROUGH HOLE I²PAK (TO-262) POWER PACKAGE IN TUBE (SUFFIX "-1")




 ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING

The device is manufactured using high voltage Multi-Epitaxial Planar technology for high switching speeds and medium voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The device is designed for use in lighting applications and low cost switch-mode power supplies.

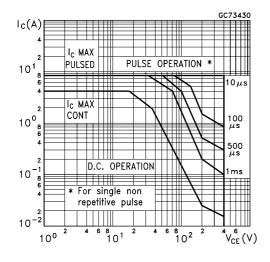
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	700	V
Vceo	Collector-Emitter Voltage (I _B = 0)	400	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	9	V
Ic	Collector Current	4	А
I _{CM}	Collector Peak Current (t _p < 5 ms)	8	А
Ι _Β	Base Current	2	А
I _{BM}	Base Peak Current (t _p < 5 ms)	4	А
P _{tot}	Total Dissipation at T _c = 25 °C	70	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

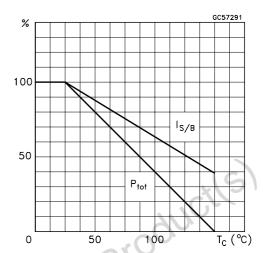
September 2003 1/7

THERMAL DATA

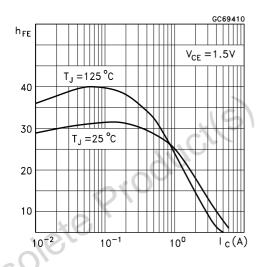
R _{thj-case}	Thermal Resistance Junction-Case	Max	1.78	°C/W
$R_{thj-amb}$	Thermal Resistance Junction-Ambient	Max	62.5	°C/W

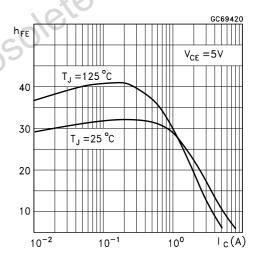

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

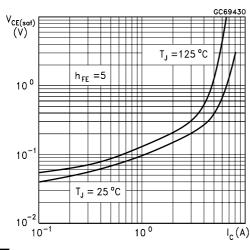
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 700 V V _{CE} = 700 V	T _C = 125 °C			100 500	μA μA
V _{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA		9			V
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	Ic = 100 mA	L = 25 mH	400			34
ICEO	Collector Cut-Off Current (I _B = 0)	V _{CE} = 400 V			0//	250	μΑ
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 0.5 A I _C = 1 A I _C = 2.5 A I _C = 4 A	$I_B = 0.1 A$ $I_B = 0.2 A$ $I_B = 0.5 A$ $I_B = 1 A$	Pr	0.5	0.7 1 1.5	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 0.5 A I _C = 1 A I _C = 2.5 A	$I_B = 0.1 A$ $I_B = 0.2 A$ $I_B = 0.5 A$			1.1 1.2 1.3	V V V
h _{FE} *	DC Current Gain	I _C = 10 mA I _C = 2 A	V _{CE} = 5 V V _{CE} = 5 V	10 14		28	
t _s	RESISTIVE LOAD Storage Time Fall Time	$V_{CC} = 125 \text{ V}$ $I_{B1} = 0.4 \text{ A}$ $T_p = 30 \mu\text{s}$	I _C = 2 A I _{B2} = -0.4 A (see fig.2)	1.5	0.2	3 0.4	μs μs
t _s	INDUCTIVE LOAD Storage Time Fall Time	Ic = 2 A V _{BE(off)} = -5 V V _{clamp} = 200 V	$I_{B1} = 0.4 A$ $R_{BB} = 0 \Omega$ (see fig.1)		0.6 0.1	1 0.2	μs μs

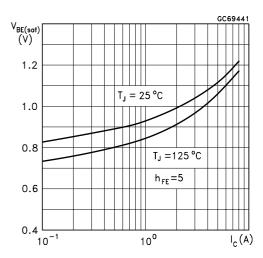

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

2/7

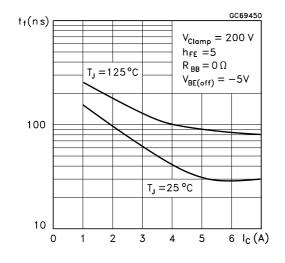

Safe Operating Areas


Derating Curve

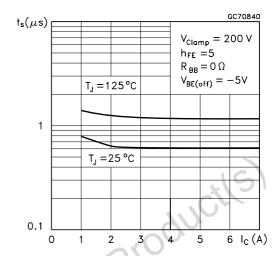

DC Current Gain


DC Current Gain

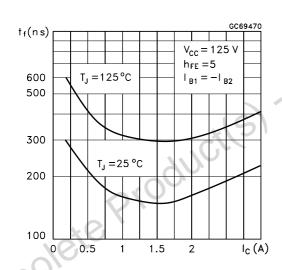
Collector Emitter Saturation Voltage

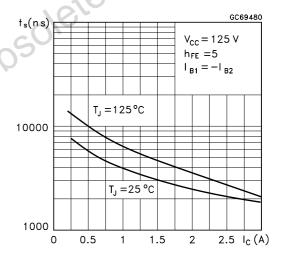


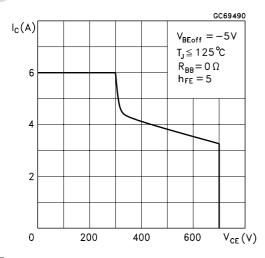
Base Emitter Saturation Voltage



477


Inductive Fall Time


Inductive Storage Time


Resistive Fall Time

Resistive Load Storage Time

Reverse Biased SOA

4/7

Figure 1: Inductive Load Switching Test Circuit.

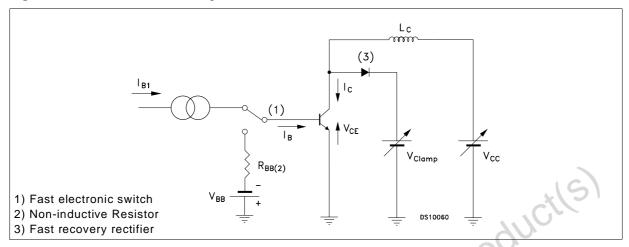
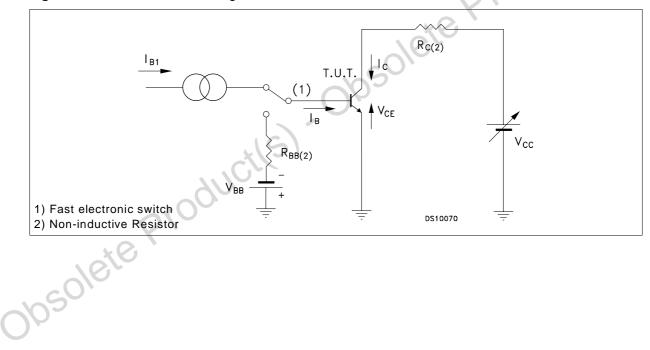
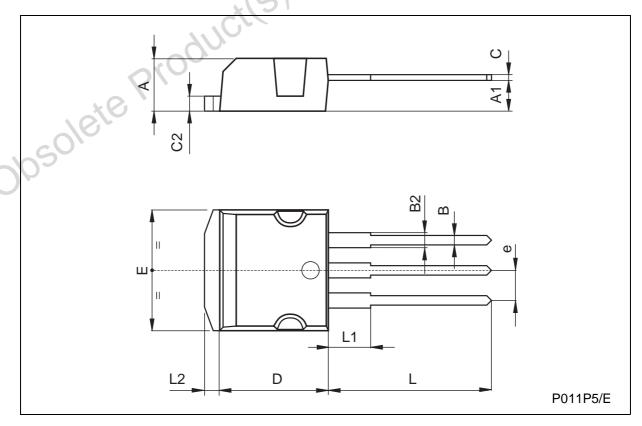




Figure 2: Resistive Load Switching Test Circuit.

TO-262 (I²PAK) MECHANICAL DATA

DIM.	mm			inch		
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048	00,0	0.053
D	8.95		9.35	0.352	2/0	0.368
е	2.4		2.7	0.094		0.106
E	10		10.4	0.393		0.409
L	13.1		13.6	0.515		0.531
L1	3.48		3.78	0.137		0.149
L2	1.27		1.4	0.050		0.055

6/7

Obsolete Product(s). Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2003 STMicroelectronics - All Rights reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for stmicroelectronics manufacturer:

Other Similar products are found below:

DATAPACK/F0253201VXA SLDC/F0253201VXA LD29300D2T25R M24M02-DWMN3TP/K DATECODECHG/F8754901VXA AIJTAGOPTO-1 BZW04-15B LDK320AM33R SLDC-CHARGE/F8755201VXC SPC564A80CAL176 SPC56XVTOP-M STEVAL-ILL076V2
STEVAL-ISA175V1 STEVAL-VNH5050A STM32F207IGT7 STR91X-SK/RAI STTH12003TV1 STVNIM-EVAL M24C02-FDW6TP
BAT48 BTA08-800BWRG 417989F SG3525A ST7FLITE25F2M6 STEVAL-IFP019V1 STEVAL-ILL079V1 STEVAL-ISF003V1
STL140N4F7AG STM32F031F4P7 STM32F071CBU6 STM32F303VBT6 STM32F765ZIT6 STM32PRIM-LABUPG STM8A128-EVAL
STW56N65DM2 LD29150DT18R LF50ABV P-NUCLEO-IHM002 VIPER38HDTR VIPER27LD VIPER16HN PD57070-E PD55003-E
EVAL6226QR EVAL6227PD EVAL6228QR EVALSP1340HDM EVLVIP16L-4WFL EV-VN7050AJ EV-VND5E025AK