
NPN TRANSISTOR POWER MODULE

- NPN TRANSISTOR
- HIGH CURRENT POWER BIPOLAR MODULE
- VERY LOW R_{th} JUNCTION CASE
- SPECIFIED ACCIDENTAL OVERLOAD AREAS
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING
- LOW INTERNAL PARASITIC INDUCTANCE

APPLICATIONS:

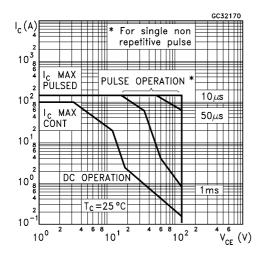
- MOTOR CONTROL
- SMPS & UPS
- WELDING EQUIPMENT

ABSOLUTE MAXIMUM RATINGS

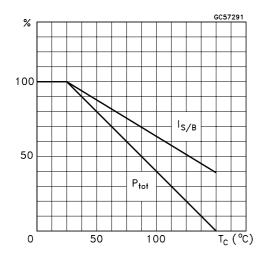
Symbol	Parameter	Value	Unit
V _{CEV}	Collector-Emitter Voltage (V _{BE} = -5 V)	200	V
V _{CEO(sus)}	Collector-Emitter Voltage (I _B = 0)	125	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	7	V
Ic	Collector Current	100	Α
I _{CM}	Collector Peak Current (t _p = 10 ms)	150	Α
I _B	Base Current	20	Α
I _{BM}	Base Peak Current (t _p = 10 ms)	30	Α
P _{tot}	Total Dissipation at T _c = 25 °C	250	W
V _{isol}	Insulation Withstand Voltage (RMS) from All Four Terminals to External Heatsink	2500	
T _{stg}	Storage Temperature	-55 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

February 2003 1/7

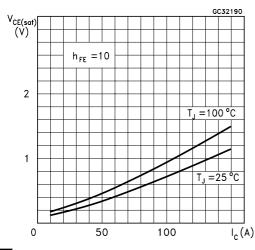
THERMAL DATA

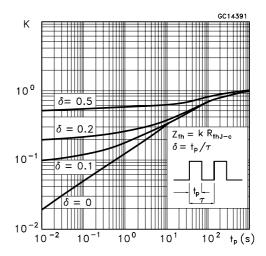

R _{thj-case}	Thermal Resistance Junction-case	Max	0.5	°C/W
R _{thc-h}	Thermal Resistance Case-heatsink With C	onductive		
	Grease Applied	Max	0.05	°C/W

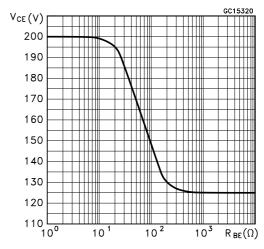
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

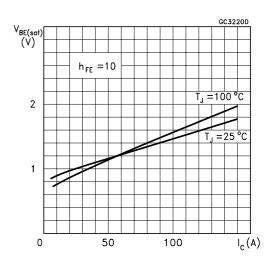

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CER}	Collector Cut-off Current (R _{BE} = 5 Ω)	V _{CE} = V _{CEV} V _{CE} = V _{CEV} T _c = 100 °C			1 5	mA mA
I _{CEV}	Collector Cut-off Current (V _{BE} = -5V)	$V_{CE} = V_{CEV}$ $V_{CE} = V_{CEV}$ $T_c = 100$ °C			1 4	mA mA
ГЕВО	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			1	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	$I_C = 0.2 \text{ A}$ L = 25 mH $V_{clamp} = 125 \text{ V}$	125			V
h _{FE} *	DC Current Gain	I _C = 100 A V _{CE} = 5		27		
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$\begin{split} I_C &= 50 \text{ A} & I_B = 2.5 \text{ A} \\ I_C &= 50 \text{ A} & I_B = 2.5 \text{ A} & T_c = 100 ^{\circ}\text{C} \\ I_C &= 100 \text{ A} & I_B = 10 \text{ A} \\ I_C &= 100 \text{ A} & I_B = 10 \text{ A} & T_c = 100 ^{\circ}\text{C} \end{split}$		0.45 0.55 0.7 0.9	0.9 1.2 0.9 1.5	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$\begin{split} &I_{C} = 50 \text{ A} & I_{B} = 2.5 \text{ A} \\ &I_{C} = 50 \text{ A} & I_{B} = 2.5 \text{ A} & T_{c} = 100 ^{\circ}\text{C} \\ &I_{C} = 100 \text{ A} & I_{B} = 10 \text{ A} \\ &I_{C} = 100 \text{ A} & I_{B} = 10 \text{ A} & T_{c} = 100 ^{\circ}\text{C} \end{split}$		1.15 1.1 1.45 1.55	1.4 1.4 1.8 1.9	V V V
di _C /dt	Rate of Rise of On-state Collector	$V_{CC} = 300 \text{ V}$ $R_C = 0$ $t_p = 3 \mu s$ $I_{B1} = 15 \text{ A}$ $T_c = 100 ^{\circ}\text{C}$	270	350		A/μs
V _{CE} (3 μs)	Collector-Emitter Dynamic Voltage	$V_{CC} = 300 \text{ V}$ $R_C = 1 \Omega$ $I_{B1} = 15 \text{ A}$ $T_c = 100 ^{\circ}\text{C}$		2.7	3.5	V
V _{CE} (5 μs)	Collector-Emitter Dynamic Voltage	$V_{CC} = 300 \text{ V}$ $R_{C} = 1 \Omega$ $I_{B1} = 15 \text{ A}$ $T_{c} = 100 ^{\circ}\text{C}$		2	2.5	V
t _s t _f t _c	Storage Time Fall Time Cross-over Time	$\begin{array}{ll} I_{C} = 100 \; A & V_{CC} = 90 \; V \\ V_{BB} = -5 \; V & R_{BB} = 0.47 \; \Omega \\ V_{clamp} = 125 \; V \; I_{B1} = 10 \; A \\ L = 45 \; \mu H & T_{c} = 100 \; ^{\circ} C \end{array}$		1 0.1 0.2	2 0.2 0.35	μs μs μs
V _{CEW}	Maximum Collector Emitter Voltage Without Snubber	$\begin{split} I_{CWoff} &= 150 \text{ A} I_{B1} = 10 \text{ A} \\ V_{BB} &= -5 \text{ V} \qquad V_{CC} = 90 \text{ V} \\ L &= 30 \mu\text{H} \qquad R_{BB} = 0.5 \Omega \\ T_c &= 125 ^{\circ}\text{C} \end{split}$	125			V

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

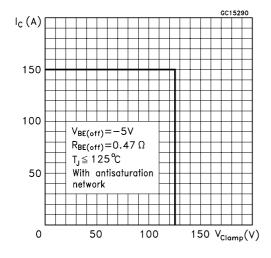

Safe Operating Areas


Derating Curve

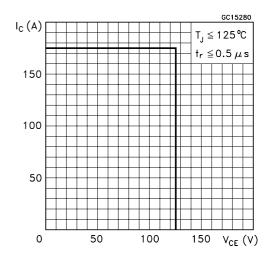

Collector Emitter Saturation Voltage


Thermal Impedance

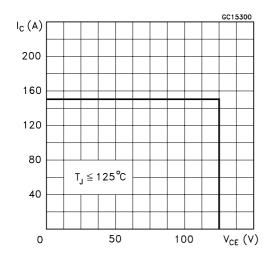
Collector-emitter Voltage Versus Base Emitter Resistance

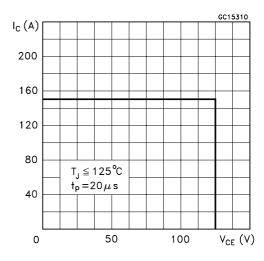


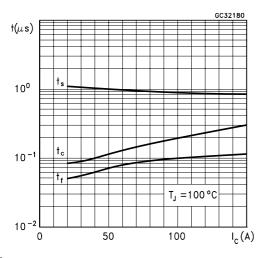
Base-Emitter Saturation Voltage

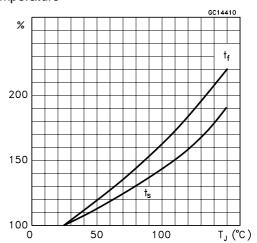


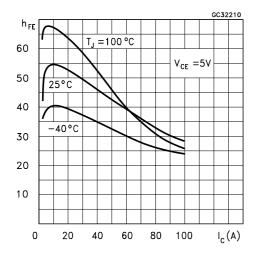
57

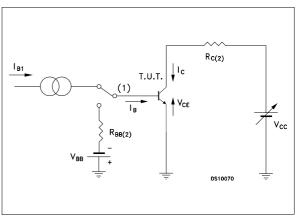

Reverse Biased SOA


Foward Biased SOA

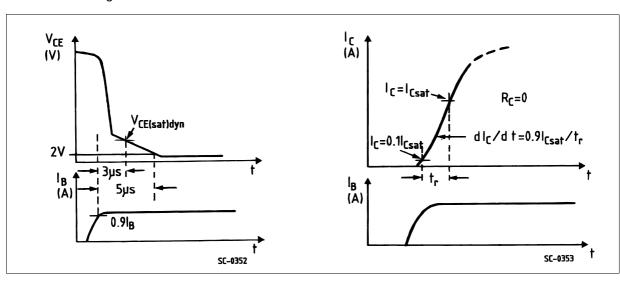

Reverse Biased AOA

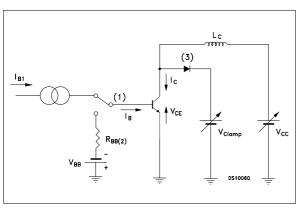

Forward Biased AOA


Switching Times Inductive Load


Switching Times Inductive Load Versus Temperature

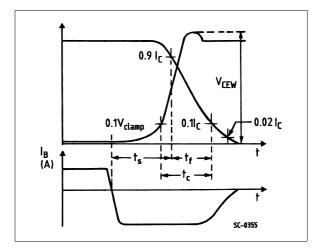
Dc Current Gain


Turn-on Switching Test Circuit

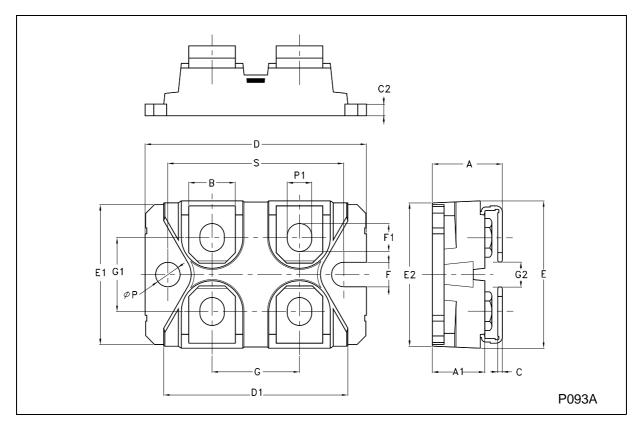

(1) Fast electronic switch

(2) Non-inductive load

Turn-on Switching Waveforms


Turn-off Switching Test Circuit

(1) Fast electronic switch(3) Fast recovery rectifier


(2) Non-inductive load

Turn-off Switching Waveforms

ISOTOP MECHANICAL DATA

DIM.	mm		inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	11.8		12.2	0.465		0.480
A1	8.9		9.1	0.350		0.358
В	7.8		8.2	0.307		0.322
С	0.75		0.85	0.029		0.033
C2	1.95		2.05	0.076		0.080
D	37.8		38.2	1.488		1.503
D1	31.5		31.7	1.240		1.248
Е	25.15		25.5	0.990		1.003
E1	23.85		24.15	0.938		0.950
E2		24.8			0.976	
G	14.9		15.1	0.586		0.594
G1	12.6		12.8	0.496		0.503
G2	3.5		4.3	0.137		1.169
F	4.1		4.3	0.161		0.169
F1	4.6		5	0.181		0.196
Р	4		4.3	0.157		0.169
P1	4		4.4	0.157		0.173
S	30.1		30.3	1.185		1.193

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460
2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA
2N2369ADCSM 2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E
MCH4021-TL-E US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR
EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MHTL-E NSV40301MZ4T1G NTE101