life.augmented

Stepper motor driver

Datasheet - production data

Features

- Able to drive both windings of bipolar stepper motor
- Output current up to 750 mA each winding
- Wide voltage range: 10 V to 46 V
- Half-step, full-step and microstepping mode
- Built-in protection diodes
- Internal PWM current control
- Low output saturation voltage
- Designed for unstabilized motor supply voltage
- Internal thermal shutdown

Description

The L6219 is a bipolar monolithic integrated circuits intended to control and drive both winding of a bipolar stepper motor or bidirectionally control two DC motors.

The L6219 with a few external components form a complete control and drive circuit for LS-TTL or microprocessor controlled stepper motor system. The power stage is a dual full bridge capable of sustaining 46 V and including four diodes for current recirculation.

A cross conduction protection is provided to avoid simultaneous cross conduction during switching current direction.

An internal pulse-width-modulation (PWM) controls the output current to 750 mA with peak startup current up to 1 A .

Wide range of current control from 750 mA (each bridge) is permitted by means of two logic inputs and an external voltage reference. A phase input to each bridge determines the load current direction. A thermal protection circuitry disables the outputs if the chip temperature exceeds safe operating limits.

Table 1. Device summary

Part number	Package	Packing
E-L6219DS	SO24	Tube
E-L6219DS013TR	SO24	Tape and reel

Contents

1 Block diagram 3
2 Functional description 7
2.1 Input logic (IO and I1) 7
2.2 Phase 7
2.3 Current sensor 7
2.4 Single-pulse generator 8
2.5 Output stage 8
2.6 VS, VSS, VRef 9
3 Application informations 10
4 Package information 11
4.1 SO24 package information 12
5 Revision history 13

1 Block diagram

Figure 1. Block diagram

Table 2. Absolute maximum rating

Parameter	Description	Value	Unit
V_{s}	Supply voltage	50	V
I_{O}	Output current (peak)	± 1	A
I_{O}	Output current (continuous)	± 0.75	A
$\mathrm{~V}_{\mathrm{ss}}$	Logic supply voltage	7	V
$\mathrm{~V}_{\mathrm{in}}$	Logic input voltage range	-0.3 to +7	V
$\mathrm{~V}_{\text {sense }}$	Sense output voltage	1.5	V
$\mathrm{~T}_{\mathrm{j}}$	Junction temperature	+150	${ }^{\circ} \mathrm{C}$
T_{op}	Operating temperature range	-20 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$

Figure 2. SO24 pins connection (top view)

Table 3. Pin functions

Pin no.	Name	Description
1,2	Output A	See pins 5, 21
3,23	Sense resistor	Connection to lower emitters of output stage for insertion of current sense resistor.
4,22	Comparator input	Input connected to the comparators. The voltage across the sense resistor is feedback to this input through the low pass filter RC CC. The higher power transistors are disabled when the sense voltage exceeds the reference voltage of the selected comparator. When this occurs the current decays for a time set by RT CT (toff = 1.1 RT CT). See Figure 3.
5,21	Output B	Output connection. The output stage is a H bridge formed by four transistors and four diodes suitable for switching applications.
6,19	Ground	See pins 7, 18
7,18	Input 0	Ground connection. With pins 6 and 19 also conducts heat from die to printed circuit copper.
8,20	Input 1	See Input 1 (pins 9, 17)
9,17	These pins and pins 8, 20 (input 0) are logic inputs which select the outputs of the comparators to set the current level. Current also depends on the sensing resistor and reference voltage. See functional description.	

Table 3. Pin functions (continued)

Pin no.	Name	Description
10,16	Phase	This TTL-compatible logic inputs sets the direction of current flow through the load. A high level causes current to flow from output A (source) to output B (sink). A Schmitt trigger on this input provides good noise immunity and a delay circuit prevents output stage short-circuits during switching.
11,15	Reference voltage	A voltage applied to this pin sets the reference voltage of the comparators, this determining the output current (also thus depending on Rs and the two inputs input 0 and input 1).
12,14	RC	A parallel RC network connected to this pin sets the OFF time of the higher power transistors. The pulse generator is a monostable triggered by the output of the comparators (toff $=1.1$ RT CT).
13	$\mathrm{~V}_{\text {SS }}$ - Logic supply	Supply voltage input for logic circuitry
24	$\mathrm{~V}_{\mathrm{S}}$ - Load supply	Supply voltage input for the output stages

Note: $\quad E S D$ on $G N D, V_{S}, V_{S S}$, OUT 1 A and OUT 2 A is guaranteed up to 1.5 KV (human body model, $1500 \mathrm{~W}, 100 \mathrm{pF}$).

Figure 3. Timing diagram

Table 4. Thermal data

Parameter	Description	SO24	Unit	
$\mathrm{R}_{\text {thj-case }}$	Thermal resistance junction-case \quad max.	18	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{R}_{\mathrm{thj}-\mathrm{amb}}$	Thermal resistance junction-ambient	max.	$75^{(1)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. With minimized copper area.

Table 5. Electrical characteristics
$\left(\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=46 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=4.75 \mathrm{~V}\right.$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}$, unless otherwise specified) see Figure 5

Parameter	Description	Test condition	Min.	Typ.	Max.	Unit
Output drivers ($\mathrm{OUT}_{\mathrm{A}}$ or $\mathrm{OUT}_{\mathrm{B}}$)						
V_{S}	Motor supply range	-	10	-	46	V
$I_{\text {CEX }}$	Output leakage current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{Vs}, \\ & \mathrm{~V}_{\text {OUT }}=0 \end{aligned}$		$\begin{aligned} & <1 \\ & <-1 \end{aligned}$	$\begin{gathered} 50 \\ -50 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {CE(sat) }}$	Output saturation voltage	Sink driver, $\mathrm{I}_{\text {OUT }}=+500 \mathrm{~mA}$ Sink driver, $\mathrm{I}_{\text {OUT }}=+750 \mathrm{~mA}$ Source driver, $\mathrm{I}_{\text {OUT }}=-500 \mathrm{~mA}$ Source driver, $\mathrm{I}_{\text {OUT }}=-750 \mathrm{~mA}$		$\begin{aligned} & 0.3 \\ & 0.7 \\ & 1.1 \\ & 1.3 \end{aligned}$	$\begin{gathered} 0.6 \\ 1 \\ 1.4 \\ 1.6 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
I_{R}	Clamp diode leakage current	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	-	<1	50	$\mu \mathrm{A}$
V_{F}	Clamp diode forward voltage	Sink diode Source diode $\mathrm{I}_{\mathrm{F}}=750 \mathrm{~mA}$	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {S(on) }}$	Driver supply current	Both bridges ON, no load	-	8	15	mA
$\mathrm{I}_{\mathrm{S} \text { (off) }}$	Driver supply current	Both bridges OFF	-	6	10	mA
Control logic						
$\mathrm{V}_{\text {IN(H) }}$	Input voltage	All inputs	2.4	-	-	V
$\mathrm{V}_{\text {IN(L) }}$	Input voltage	All inputs	-	-	0.8	V
$\mathrm{I}_{\mathrm{IN}(\mathrm{H})}$	Input current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	-	<1	20	$\mu \mathrm{A}$
$1 \operatorname{lin}_{(L)}$	Input current	$\mathrm{V}_{\text {IN }}=0.84 \mathrm{~V}$	-	-3	-200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {REF }}$	Reference voltage	Operating ${ }^{(1)}$	1.5	-	7.5	V
$\mathrm{I}_{\text {SS(ON) }}$	Total logic supply current	$\mathrm{I}_{0}=\mathrm{I}_{1}=0.8 \mathrm{~V}$, no load	-	64	74	mA
ISS(OFF)	Total logic supply current	$\mathrm{I}_{0}=\mathrm{I}_{1}=2.4 \mathrm{~V}$, no load	-	10	14	mA
Comparators						
$\mathrm{V}_{\text {REF }} / \mathrm{V}_{\text {Sense }}$	Current limit threshold (at trip point)	$\mathrm{I}_{0}=\mathrm{I}_{1}=0.8 \mathrm{~V}$	9.5	10	10.5	-
		$\mathrm{I}_{0}=2.4 \mathrm{~V}, \mathrm{I}_{1}=0.8 \mathrm{~V}$	13.5	15	16.5	-
		$\mathrm{I}_{0}=0.8 \mathrm{~V}, \mathrm{I}_{1}=2.4 \mathrm{~V}$	25.5	30	34.5	-
$\mathrm{t}_{\text {off }}$	Cutoff time	$\mathrm{R}_{\mathrm{t}}=56 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{t}}=820 \mathrm{pF}$	-	50		$\mu \mathrm{s}$
t_{d}	Turn off delay	Figure 3	-	1		$\mu \mathrm{s}$
Protection						
TJ	Thermal shutdown temperature	-	-	170	-	${ }^{\circ} \mathrm{C}$

1. To reduce the switching losses the base bias of the bridge's low side NPN transistor is proportional to the DAC output, then the output current driving capability is also proportional to the DAC output voltage, having as reference 750 mA with $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$ and $\mathrm{DAC}=100 \%$. For example using $\mathrm{V}_{\mathrm{REF}}=2 \mathrm{~V}$ and $\mathrm{DAC}=67 \%$ the output maximum current driving capability will become $750 \mathrm{~mA} *(2 \mathrm{~V} * 0.67) /(5 \mathrm{~V} * 1)=200 \mathrm{~mA}$.

2 Functional description

The circuit is intended to drive both windings of a bipolar stepper motor.
The peak current control is generated through switch mode regulation. There is a choice of three different current levels with the two logic inputs I01-I11 for winding 1 and I02-I12 for winding 2.

The current can also be switched off completely.

2.1 Input logic (I_{0} and I_{1})

The current level in the motor winding is selected with these inputs. (See Figure 4). If any of the logic inputs is left open, the circuit will treat it has a high level input.

Table 6. Current levels

$\mathbf{1 0}$	$\mathbf{1 1}$	Current level
H	H	No current
L	H	Low current $1 / 3$ IO max.
H	L	Medium current $2 / 3$ IO max.
L	L	Maximum current IO max.

2.2 Phase

This input determines the direction of current flow in the windings, depending on the motor connections. The signal is fed through a Schmidt-trigger for noise immunity, and through a time delay in order to guarantee that no short-circuit occurs in the output stage during phase-shift. High level on the phase input causes the motor current flow from out A through the winding to out B.

2.3 Current sensor

This part contains a current sensing resistor $\left(R_{S}\right)$, a low pass filter (R_{C}, C_{C}) and three comparators. Only one comparator is active at a time. It is activated by the input logic according to the current level chosen with signals I_{0} and I_{1}. The motor current flows through the sensing resistor RS . When the current has increased so that the voltage across R_{S} becomes higher than the reference voltage on the other comparator input, the comparator goes high, which triggers the pulse generator.

The max peak current $I_{\max }$ can be defined by:

Equation 1

$$
I_{\max }=\frac{V_{\text {ref }}}{10 R_{s}}
$$

2.4 Single-pulse generator

The pulse generator is a monostable triggered on the positive going edge of the comparator output. The monostable output is high during the pulse time, $\mathrm{t}_{\text {off }}$, which is determined by the time components Rt and Ct.

Equation 2

$$
t_{\text {off }}=1.1 \cdot R_{t} C_{t}
$$

The single pulse switches off the power feed to the motor winding, causing the winding current to decrease during $\mathrm{t}_{\text {off }}$. If a new trigger signal should occur during $\mathrm{t}_{\text {off }}$, it is ignored.

2.5 Output stage

The output stage contains four Darlington transistors (source drivers) four saturated transistors (sink drivers) and eight diodes, connected in two H bridge.

Figure 4. Principle operating sequence

The source transistors are used to switch the power supplied to the motor winding, thus driving a constant current through the winding. It should be noted however, that is not permitted to short-circuit the outputs.

Internal circuitry is added in order to increase the accuracy of the motor current particularly with low current levels.

$2.6 \quad \mathrm{~V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\text {Ref }}$

The circuit will stand any order of turn-on or turn-off the supply voltages V_{S} and V_{SS}. Normal $\mathrm{dV} / \mathrm{dt}$ values are then assumed.

Preferably, $\mathrm{V}_{\text {Ref }}$ should be tracking V_{SS} during power-on and power-off if V_{S} is established.

3 Application informations

Some stepper motors are not designed for continuous operation at maximum current. As the circuit drives a constant current through the motor, its temperature might increase exceedingly both at low and high speed operation. Also, some stepper motors have such high core losses that they are not suited for switch mode current regulation.

Unused inputs should be connected to proper voltage levels in order to get the highest noise immunity. As the circuit operates with switch mode current regulation, interference generation problems might arise in some applications. A good measure might then be to decouple the circuit with a 100 nF capacitor, located near the package between power line and ground. The ground lead between Rs, and circuit GND should be kept as short as possible. A typical application circuit is shown in Figure 5. Note that C_{t} must be NPO type or similar else. To sense the winding current, paralleled metal film resistors are recommended (R_{s}).

Figure 5. Typical application circuit

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

4.1 SO24 package information

Figure 6. SO24 package outline

Table 7. SO24 package mechanical data

Symbol	Dimensions (mm)			Dimensions (inch)					
	Min.	Typ.	Max.	Min.	Typ.	Max.			
A	2.35	-	2.65	0.093	-	0.104			
A1	0.10	-	0.30	0.004	-	0.012			
B	0.33	-	0.51	0.013	-	0.020			
C	0.23	-	0.32	0.009	-	0.013			
D $^{(1)}$	15.20	-	15.60	0.598	-	0.614			
E	7.40	-	7.60	0.291	-	0.299			
e	-	1.27	-	-	0.050	-			
H	10.0	-	10.65	0.394	-	0.419			
h	0.25	-	0.75	0.010	-	0.030			
L	0.40	-	1.27	0.016	-	0.050			
k	00° (min.), 8° (max.)								
ddd	-	-	0.10	-	-	0.004			

1. "D" dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side.

5 Revision history

Table 8. Document revision history

Date	Revision	Changes
30-Oct-2001	7	First Issue on the EDOCS DMS.
11-May-2005	8	Changed the look \& feel layout. Modified Table 6 on page 9.
14-Sep-2005	9	Change in the Features sections: Wide voltage range 10 V to 46 V Output current up to 750 mA each winding.
19-Dec-2005	10	Corrected in the Table 5 the max. value of the $\mathrm{V}_{\text {REF }}$ parameter from 2 V to 7.5 V.
28-Mar-2006	11	Corrected ISS(ON) values in the Table 5.
18-Mar-2008	12	Document reformatted.
01-Sep-2008	13	Added note 1 in Table 5 on page 6.
04-Oct-2018	14	Removed PowerDIP24 package from the whole document. Minor modifications throughout document.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

$$
\text { © } 2018 \text { STMicroelectronics - All rights reserved }
$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801

LB11851FA-BH NCV70627DQ001R2G

