

High power transient voltage suppressor

QFN package

*Pin 1 and Pin 2 must be connected together.

Product status link

ESDA22P150-1U3M

Features

- Low clamping voltage
- · Peak pulse power:
 - 4500 W (8/20μs)
- Stand off voltage 20 V
- Unidirectional diode
- · Low leakage current:
 - 0.25 μA at 25°C
- Complies with the following standards: IEC 61000-4-2 level 4
 - ± 30 kV (air discharge)
 - ± 30 kV (contact discharge)

Application

Where transient over voltage protection in ESD sensitive equipment is required, such as:

- · Smartphones, mobile phones, tablets, portable multimedia
- USB V_{bus} protection
- Power supply protection
- · Battery protection

Description

The ESDA22P150-1U3M is a unidirectional single line TVS diode designed to protect the power line against EOS & ESD transients.

The device is ideal for applications where high power TVS and board space saving is required.

1 Characteristics

Table 1. Absolute maximum ratings (T_{amb} = 25 °C)

Symbol	Parameter		Value	Unit
W	V _{pp} Peak pulse voltage	IEC 61000-4-2 contact discharge	>30	kV
у рр		IEC 61000-4-2 air discharge	>30	
P _{pp}	Peak pulse power (8/20 μs)		4500	W
I _{pp}	Peak pulse current (8/20 μs)		150	Α
P _{pp}	Peak pulse power (10/1000 μs)		330	W
I _{pp}	Peak pulse current (10/1000 μs)		11	Α
T _{op}	Operating junction temperature range		-55 to 150	°C
T _{stg}	Storage junction temperature range		-55 to 150	°C

Figure 1. Electrical characteristics (definitions)

Symbol Parameter V_{BR} Breakdown voltage V_{CL} Clamping voltage ${\rm I}_{\rm RM}$ Leakage current @ V_{RM} V_{RM} = Stand-off voltage I_{PP} = Peak pulse current $R_{\scriptscriptstyle D}$ Dynamic resistance I_R = Breakdown current V_{F} = Forward voltage = Forward current I_{F}

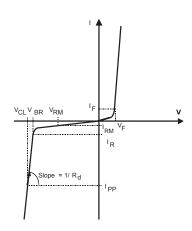


Table 2. Electrical characteristics (values) (T_{amb} = 25° C)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{RM}				20	V
V _{BR}	I _R = 1 mA	21	22	23.5	V
I _{RM}	V _{RM} = 20 V			250	nA
V _{CL}	I _{PP} = 100 A 8/20μs		28	31	V
VCL	I _{PP} = 150 A 8/20μs		31	34	
R _D	8/20µs		0.06		Ω
V _{CL}	I _{PP} = 9.2 A 10/1000 μs		27.5	30	V
R _D	10/1000 µs		0.5		Ω
V _F	I _F = 10 mA		0.7		V

DS12572 - Rev 1 page 2/12

1.1 Characteristics (curves)

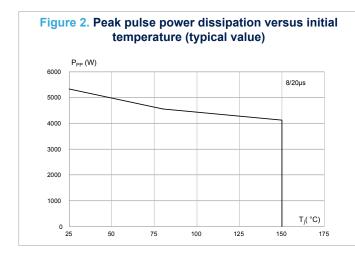
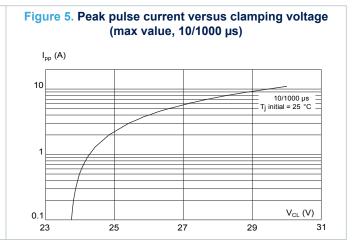
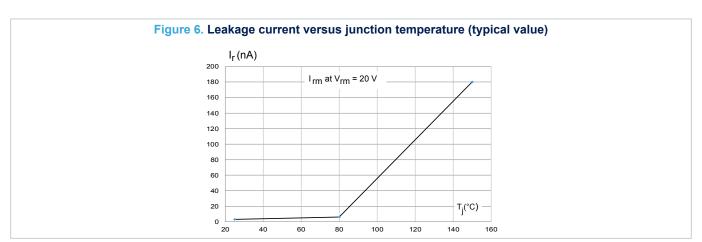


Figure 3. Peak pulse power versus exponential pulse duration (typical value)

1000


Ppp (W)

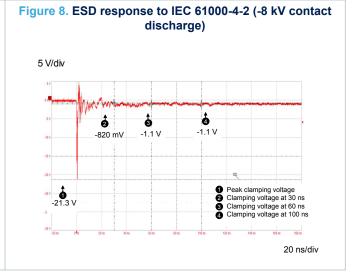

1000

tp(µs)

1000

1000

DS12572 - Rev 1 page 3/12


Figure 7. ESD response to IEC 61000-4-2 (+8 kV contact discharge)

5 V/div

32.8 V

23.4 V 23.3 V 23.6 V

Peak clamping voltage at 30 ns
Clamping voltage at 60 ns
Clamping voltage at 100 ns
Clamping voltage at 100 ns

DS12572 - Rev 1 page 4/12

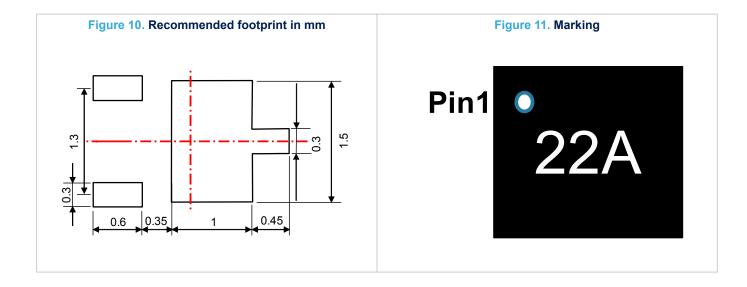
Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

2.1 QFN package information

Bottom view
Sideview

Sideview


Figure 9. QFN package outline

DS12572 - Rev 1 page 5/12

Table 3. QFN package mechanical data

		Dimensions		
Ref.	Millimeters			
	Min.	Тур.	Max.	
Α	0.51	0.55	0.60	
A1	0.00	0.02	0.05	
A2		0.15		
b	0.25	0.30	0.35	
D		2.00		
E		2.00		
е		1.30		
D2	1.40	1.50	1.60	
E2	0.90	1.00	1.10	
K	0.20			
L1		0.25		
L	0.35	0.40	0.45	
N		3		

DS12572 - Rev 1 page 6/12

Pin #1
P0
Ø D0
F1
F
W
User direction of unreeling

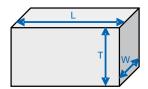
Figure 12. Tape outline

Note: Pocket dimensions are not on scale Pocket shape may vary depending on package

Table 4. Tape and reel dimensions

	Dimensions (milimeters) Millimeters			
Ref.				
	Min.	Тур.	Max.	
P1	3.90	4.00	4.10	
P0	3.90	4.00	4.10	
Ø D0	1.50	1.55	1.60	
Ø D1	1.00			
F	3.40	3.50	3.60	
E1	1.65	1.75	1.85	
K0	0.65	0.75	0.85	
P2	1.95	2.00	2.05	
W	7.70	8.00	8.30	
A0	2.15	2.25	2.35	

DS12572 - Rev 1 page 7/12



3 Recommendation on PCB assembly

3.1 Stencil opening design

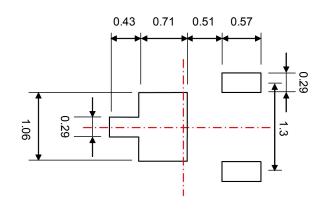

- 1. General recommendation on stencil opening design
 - a. Stencil opening dimensions: L (Length), W (Width), T (Thickness).

Figure 13. Stencil opening recommendation

- b. General design rule
 - Stencil thickness (T) = 75 \sim 125 μ m
 - \circ $\frac{W}{T} \ge 1.5$
 - $\circ \qquad \frac{L \times W}{2T(L+W)} \ge 0.66$
- 1. Reference design
 - a. Stencil opening thickness: 100 µm
 - b. Stencil opening for leads: Opening to footprint ratio is 90%
 - c. Stencil opening for expose pad: Opening to footprint ratio is 50%

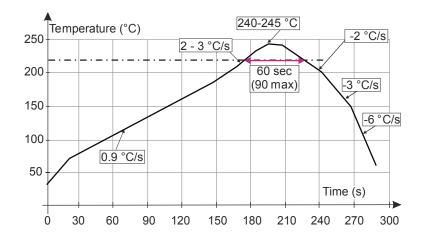
Figure 14. Recommended stencil window position in mm

DS12572 - Rev 1 page 8/12

3.2 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Use solder paste with fine particles: powder particle size 20-45 μm.

3.3 Placement

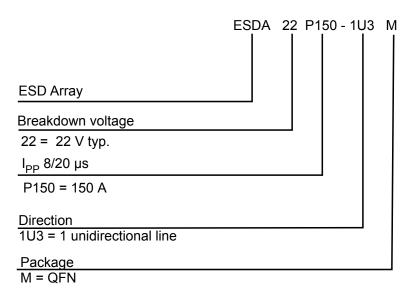

- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ±0.05 mm is recommended.
- 4. 3.5 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.4 PCB design preference

- 1. To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

3.5 Reflow profile

Figure 15. ST ECOPACK® recommended soldering reflow profile for PCB mounting


Note: Minimize air convection currents in the reflow oven to avoid component movement.

DS12572 - Rev 1 page 9/12

4 Ordering information

Figure 16. Ordering information scheme

Table 5. Ordering information

Order code	Marking	Weight	Base qty.	Delivery mode
ESDA22P150-1U3M	22A	7 mg	5000	Tape and reel

1. The marking can be rotated by multiples of 90° to differentiate assembly location.

DS12572 - Rev 1 page 10/12

Revision history

Table 6. Document revision history

Date	Revision	Changes
24-May-2018	1	First issue.

DS12572 - Rev 1 page 11/12

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12572 - Rev 1 page 12/12

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ESD Suppressors / TVS Diodes category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP
P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327
ESD119B1W01005E6327XTSA1 ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F
3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO
ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 82350120560
82356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF
D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A 5KP15A