Application Specific Discretes
A.S.D. ${ }^{\text {T }}$

TRANSILTM ARRAY FOR ESD PROTECTION

APPLICATIONS

Where transient overvoltage protection in ESD sensitive equipment is required, such as :

- COMPUTER
- PRINTERS
- COMMUNICATION SYSTEMS

It is particulary recommended for RS232 I/O port protection where the line interface withstands only 2 kV ESD surges.

FEATURES

- 6 BIDIRECTIONAL TRANSIL ${ }^{\text {TM }}$ FUNCTIONS
- VERY LOW CAPACITANCE : C= 20 pF @ VRM
- 150 W peak pulse power $(8 / 20 \mu \mathrm{~s})$

DESCRIPTION

The ESDA25B1 is a monolithic voltage suppressor designed to protect components which are connected to data and transmission lines against EDS.

BENEFITS

High ESD protection level : up to 25 kV
High integration
Suitable for high density boards

COMPLIES WITH THE FOLLOWING STANDARDS :
IEC 1000-4-2 : level 4

MIL STD 883C-Method 3015-6 : class 3
(human body model)

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
V_{PP}	Electrostatic discharge MIL STD 883C - Method 3015-6	25	kV
P_{PP}	Peak pulse power (8/20 $\mathrm{\mu s})$	150	W
$\mathrm{~T}_{\mathrm{Stg}}$	Storage temperature range Maximum junction temperature	$-55 \mathrm{to}+150$ 125	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
T_{L}	Maximum lead temperature for soldering during 10s	260	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Tamb $=25^{\circ} \mathrm{C}$)

Symbol	Parameter
V_{RM}	Stand-off voltage
V_{BR}	Breakdown voltage
V_{CL}	Clamping voltage
I_{RM}	Leakage current
I_{PP}	Peak pulse current
$\alpha \mathrm{T}$	Voltage temperature coefficient
C	Capacitance
Rd	Dynamic resistance

Types	min. note	@ max.	IR		Vm	Rd typ. note 2	αT max. note 3	C typ. OV bias
	V	V	mA	$\mu \mathrm{A}$	V	Ω	$10^{-4} /{ }^{\circ} \mathrm{C}$	pF
ESDA25B1	25	30	1	2	24	1.5	9.7	15

note 1 : Between any I/O pin and Groung
note 2 : Square pulse, $1 \mathrm{pp}=25 \mathrm{~A}, \mathrm{tp}=2.5 \mu \mathrm{~s}$.
note 3: $\Delta \mathrm{V}_{\mathrm{BR}}=\alpha \mathrm{T}^{*}\left(\operatorname{Tamb}-25^{\circ} \mathrm{C}\right)^{*} \mathrm{~V}_{\mathrm{BR}}\left(25^{\circ} \mathrm{C}\right)$

CALCULATION OF THE CLAMPING VOLTAGE

USE OF THE DYNAMIC RESISTANCE

The ESDA family has been designed to clamp fast spikes like ESD. Generally the PCB designers need to calculate easily the clamping voltage V_{CL}. This is why we give the dynamic resistance in addition to the classical parameters. The voltage across the protection cell can be calculated with the following formula:

$$
V_{C L}=V_{B R}+R d l_{P P}
$$

Where lpp is the peak current through the ESDA cell.

DYNAMIC RESISTANCE MEASUREMENT

The short duration of the ESD has led us to prefer a more adapted test wave, as below defined, to the classical $8 / 20 \mu \mathrm{~s}$ and $10 / 1000 \mu \mathrm{~s}$ surges.

$2.5 \mu \mathrm{~s}$ duration measurement wave.

As the value of the dynamic resistance remains stable for a surge duration lower than $20 \mu \mathrm{~s}$, the $2.5 \mathrm{\mu s}$ rectangular surge is well adapted. In addition both rise and fall times are optimized to avoid any parasitic phenomenon during the measurement of Rd.

Fig. 1 : Peak power dissipation versus initial junction temperature.

Fig. 3 : Clamping voltage versus peak pulse current (Tj initial = $25^{\circ} \mathrm{C}$).
Rectangular waveform $\mathrm{tp}=2.5 \mu \mathrm{~s}$.

Fig. 5 : Relative variation of leakage current versus junction temperature (typical values).

Fig. 2 : Peak pulse power versus exponential pulse duration (Tj initial $=25^{\circ} \mathrm{C}$).

Fig. 4 : Capacitance versus reverse applied voltage (typical values).

ORDER CODE

MARKING : Logo, Date Code, E25B1

PACKAGE MECHANICAL DATA

SO-8 Plastic

REF.	DIMENSIONS					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
C	0.25		0.5	0.010		0.020
c1	45° (typ)					
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.15		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S			8° (max)		

Packaging : Preferred packaging is tape and reel.
Weight : 0.08g.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 82350120560 82356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A 5KP15A

