EVAL6520-1421

14 W / 21 W T5 miniature ballast driven by L6520 and STT13005D bipolar transistors

Data brief

Features

■ Drives either T5-14W-HE or T5-21W-HE lamps

- Standard form factor ($19 \mathrm{~mm} \times 120 \mathrm{~mm}$)
- Compliance with IEC61347-2-3, IEC61000-2-3 and EN55022 Class-C

Description

The EVAL6520-1421 is a demonstration board able to drive either a 14 W or 21 W linear T5 fluorescent lamp with the L6520 low voltage ballast controller.

The half bridge consists of NPN high voltage
 power transistors driven by a suitable pulse transformer.

Contents

1 Introduction 3
2 Board description 4
3 Board performance 7
4 Application specifications 9
5 Bill of material and board schematics 10
5.1 Board schematic 12
Appendix A Magnetic components data. 13
Revision history 15

1 Introduction

The L6520 low voltage ballast controller is intended to drive extremely compact applications based on either MOSFETs or bipolar transistors.

The EVAL6520-1421 is capable of driving either a T5-14W-HE or T5-21W-HE lamp, with the same miniatured (16 mm wide) ballast.

The selection of both the resonant components and the bipolar transistors, together with the design of the suitable pulse transformer, and IC power supply is also described.

2 Board description

The board is supplied by any AC voltage in the European mains range and does not need any power factor correction having an input power of less than 25 W .

The half bridge voltage is obtained by filtering the rectified input voltage. This allows the use of a cheaper bulk capacitor and bipolar transistors.

The selection of a target condition is required by the range of the input voltage together with the necessity to drive two different kinds of lamps. In particular, the best driving condition and the best efficiency is obtained at 240 Vac with a 14 W lamp connected.

An EMI filter is placed at the board's input to meet IEC61000 standards
The lamp's cathodes are current preheated to make the ballast choke more compact thanks to the absence of auxiliary windings.

The resonant network design starts from the selection of the resonant capacitor (C10) that corresponds to the desired ballast efficiency. The inductance (L1) can be obtained by the following equation:

Equation 1

$$
\text { Lamp }=\left|\frac{\frac{1}{R_{\text {Lamp }}}}{\frac{1}{R_{\text {Lamp }}}+j \omega C_{\text {RES }}} \cdot \frac{V_{H B}}{j \omega L_{\text {RES }}+\frac{1}{\frac{1}{R_{\text {Lamp }}}+j \omega C_{R E S}}}\right|
$$

V_{HB} is the effective voltage obtained across the half bridge along one mains cycle. The lower voltage is obtained at 50 Hz and can be approximately computed as:

Equation 2

$$
V_{H B}=\left(\frac{\sqrt{2}}{2} \cdot V_{I N}-V_{F}\right)+\sqrt{\left(\frac{\sqrt{2}}{2} \cdot V_{I N}-V_{F}\right)^{2}-\frac{1.54 \cdot 10^{5} \cdot P_{\text {LAMP }}}{f_{\text {MAINS }} \cdot C_{O U T}}}
$$

where:

- $\quad \mathrm{V}_{\mathrm{F}}$ is the forward voltage drop of the rectifier bridge (1 V typ.)
- $\mathrm{V}_{\text {IN }}$ is the RMS value of the input voltage
- $\mathrm{C}_{\text {OUT }}$ is the value of the bulk capacitor in $\mu \mathrm{F}$ (In this case $\mathrm{C} 3=4.7 \mu \mathrm{~F}$ has been selected)

A resonant capacitor equal to 3.9 nF has been selected and resonant inductor equal to 3 mH has been calculated.

It is now possible to estimate the ignition frequency, which must be higher than 46 kHz (minimum programmable value), and the minimum preheating frequency that guarantees a preheating voltage higher than 130 Vrms , as required by the lamp specifications.

Equation 3

$$
V_{P H-I G N}=\left|\frac{\frac{V_{\text {PFC }} \cdot \sqrt{2}}{\pi} \cdot \frac{1}{j \omega C_{R E S}}}{\frac{1}{j \omega C_{R E S}}+j \omega L_{R E S}}\right|
$$

A preheating frequency equal to 70 kHz has been selected by connecting a $2.49 \mathrm{k} \Omega$ resistor (R5) between the FPRE pin and GND.

The half bridge is based on two STT13005D power bipolar transistors (Q1 and Q2). Both the high side and low side transistor are driven by a pulse transformer (T2).

To design this pulse transformer, the following parameters must be taken into account:

- Maximum available spacing on the PCB: this determines the core dimension.
- Maximum magnetizing current ($I_{\text {mag,rms }}$) on the primary side of the transformer: this current causes core losses to not be transferred as a useful signal on the secondary side of the transformer. To minimize it, a higher primary inductance should be adopted. Typical inductances are between 6 mH and 40 mH , depending on the core dimension and the core permeability.
- Primary to secondary transfer ratio (n): the output voltage of a step-down transformer is lower than the input voltage, whereas the output current is higher than the input current. This helps to obtain higher DC currents with lower IC power dissipation. The minimum Vbe(sat) must be guaranteed in any condition as well as the minimum IB that guarantees the saturation condition of the BJT.

The $I_{\text {mag,rms }}^{(\mathrm{MAX})}$ is selected lower than 10 mA when Vcc is equal to 13 V and a typical storage time of $1.2 \mu \mathrm{~s}$ is considered, therefore the primary inductance must be:

Equation 4

$$
\mathrm{Lpri} \geq \mathrm{Vcc} \cdot \frac{\mathrm{~T}_{\mathrm{on}, \mathrm{max}}}{\frac{I_{\text {mag,rms }}}{\sqrt{3}}}=\sqrt{3} \cdot \mathrm{Vcc} \frac{\frac{1}{2 \cdot \mathrm{f}_{\mathrm{run}}}-\mathrm{T}_{\mathrm{dt}}-\mathrm{T}_{\text {sto }}-200 \mathrm{~ns}}{\mathrm{I}_{\mathrm{mag}, \mathrm{rms}}}=1.732 \cdot \mathrm{Vcc} \frac{9.42 \mathrm{us}-\mathrm{T}_{\text {sto }}}{\mathrm{I}_{\text {mag,rms }}}=6.18 \mathrm{mH}
$$

The Vbe of the bipolar transistor can be calculated as follows (see Figure 2):

Equation 5

$$
\mathrm{Vbe}=\mathrm{Vpri} \cdot \mathrm{n}-\mathrm{lb} \cdot \mathrm{Rb}=\left[\mathrm{Vcc}-\frac{\mathrm{lb}}{\mathrm{n}} \cdot\left(\mathrm{Rds}, \text { on_h}+\mathrm{Rpri}+\mathrm{Rds}, \mathrm{on} _\mathrm{I}\right)\right] \cdot \mathrm{n}-\mathrm{lb} \cdot \mathrm{Rb}
$$

The Rds,on_h and the Rds,on_I are the ON resistances of the L6520 drivers and can be considered equal to 10Ω each.
lb is equal to $\mathrm{Ic} / \mathrm{hfe}$, and can be considered equal to $\mathrm{Ic} / 6$. lb times Rb can be set between 0.7 V and 1 V , during run mode: in this design Rb (R 6 and R 8) can be selected between 10 Ω and 13Ω.

With these constraints the following is obtained:

Equation 6

$$
\text { Vbe }=\left[13-\frac{0.46}{n} \cdot(20+\text { Rpri) }] \cdot n-0.76=13 \cdot n-9.2-0.46 \cdot \text { Rpri }-0.76>1.1 \rightarrow 13 \cdot n-0.46 \cdot \text { Rpri }>11.6\right.
$$

Selecting an Rpri (R7) equal to 47Ω, the minimum transfer ratio should be equal to 2.55 .
$n=5.6$ has been selected.
The PWM_det pin network is composed of $3 x 220 \mathrm{k} \Omega$ resistors (R11 to R13) together with a 47 pF speed-up capacitor (C11). The value of the speed-up capacitor also avoids a misdetection of the hard switching.

During normal operation the IC absorbs the following currents from the Vcc:

1. Effective base currents of the BJTs divided by $n(5.6)$. A $39 \mathrm{~mA}_{(\mathrm{MAX})}$ is estimated.
2. Magnetizing current $=10 \mathrm{~mA}_{(\mathrm{MAX})}$
3. L6520 power consumption: $8 \mathrm{~mA}_{(\mathrm{MAX})}$

A maximum current of $57 \mathrm{~mA}_{\text {rms }}$ must be foreseen. For this reason, the IC power supply has been connected in series with the resonant network (D4 and D5). This connection does not interfere with the optimum preheating of the lamp's cathodes, but introduces a little offset (7.5 V typ.) into the lamp voltage

This offset affects the EOL detection, but a different choice of values of the Zener diodes (D6 and D7) makes the detection symmetrical. The two values, together with the resistance values (R14 and R15), can be calculated through the following system of equations $\left(\mathrm{V}_{\text {Lamp, }} \mathrm{MAX}=30 \mathrm{~V}\right.$ and $\left.\mathrm{V}_{\text {Lamp,min }}=-16 \mathrm{~V}\right)$:

Equation 7

$$
\left\{\begin{array}{l}
\mathrm{V}_{\text {Lamp }, \mathrm{MAX}}=\mathrm{V}_{\text {EOL }}+\mathrm{V}_{\mathrm{Z}, \mathrm{D7}}+\mathrm{I}_{\mathrm{BIAS}} \cdot(\mathrm{R} 14+\mathrm{R} 15)+\mathrm{V}_{\mathrm{F}, \mathrm{D6}} \\
\mathrm{~V}_{\mathrm{Lamp}, \text { min }}=\mathrm{V}_{\mathrm{EOL}}-\mathrm{V}_{\mathrm{Z}, \mathrm{D6}}-\mathrm{I}_{\mathrm{BIAS}} \cdot(\mathrm{R14}+\mathrm{R15})-\mathrm{V}_{\mathrm{F}, \mathrm{D7}}
\end{array}\right.
$$

Finally, a $4.7 \mu \mathrm{~F}$ is used as the Vcc bulk capacitor (C4) and two 100 nF ceramic capacitors (C5) are placed close to the Vcc pins of the two ICs.

By allowing the startup network (R2 to R4) to pass through the upper cathode of the lamp, the automatic re-lamp feature is easily obtained.

3 Board performance

Figure 1. EMI spectrum at nominal input voltage (230 Vac)

Figure 2. Lamp voltage and current (T5 14 W HE)

Figure 3. Lamp voltage and current (T5 21 WHE)

4 Application specifications

Table 1 and 2 show the application specifications for the input and lamp requirements.

Table 1. Input requirements

Parameter	Value	Unit
Input voltage	198 to 264	$\mathrm{~V}_{\mathrm{rms}}$
Mains freq.	50 to 60	Hz
Input power	25	W max

Table 2. Lamp requirements

Parameter	T5-14 W	T5-21 W	Unit
Lamp current	$170 \pm 30 \%$		$\mathrm{~mA}_{\mathrm{rms}}$
Lamp voltage	$82 \pm 6 \%$	$123 \pm 6 \%$	$\mathrm{~V}_{\mathrm{rms}}$
Max. ignition voltage	1000		$\mathrm{~V}_{\mathrm{pk}}$
Max. preheating voltage	130	$\mathrm{~V}_{\mathrm{rms}}$	

5 Bill of material and board schematics

Table 3. Bill of material

Reference	Value / part number	Rating	Notes
C1	100 nF	275 Vac	
C2	100 nF	275 Vac	
C3	$4.7 \mu \mathrm{~F}$	$400 \mathrm{Vdc}-105{ }^{\circ} \mathrm{C}$	
C4	$4.7 \mu \mathrm{~F}$	50 Vdc	
C5	100 nF	25 Vdc	
C6	1 nF	25 Vdc	
C7	100 nF	400 Vdc	
C8	100 nF	25 Vdc	
C9	1 nF	25 Vdc	
C10	3.9 nF	1000 Vdc	Panasonic ECQ P6392JU
C11	10 pF	500 Vdc	
C12	100 nF	25 Vdc	
C13	Not mounted		
C14	22 nF	50 Vdc	
R1	PCB fuse	6A-1s	
R2	$330 \mathrm{k} \Omega$		
R3	$330 \mathrm{k} \Omega$		
R4	$270 \mathrm{k} \Omega$		
R5	$2.94 \mathrm{k} \Omega$	0.1\%	
R6	10Ω		
R7	47Ω		
R8	10Ω		
R9	470Ω		
R10	1.2Ω	1\%	
R11	$220 \mathrm{k} \Omega$		
R12	$220 \mathrm{k} \Omega$		
R13	$220 \mathrm{k} \Omega$		
R14	$560 \mathrm{k} \Omega$		
R15	$560 \mathrm{k} \Omega$		
T1	$2 \times 33 \mathrm{mH}$ CM-filter	$440 \mathrm{~mA} / 250 \mathrm{Vac}$	SCLE16333-ITACOIL

Table 3. Bill of material (continued)

Reference	Value / part number	Rating	Notes
T2	$5.6: 1: 1$	12 mH	E0802-ITACOIL (Figure 5)
L1	3 mH	0.9 A	E16113-ITACOIL (Figure 6)
U1	L6520		
Q1	STT13005D		
Q2	STT13005D		
D1	B6S-E3/80		
D2	RB751V40T1		
D3	RB751V40T1		
D4	MMSD4148T1G		
D5	BZT03C15		3 W
D6	MM3Z6V8ST1	6.8 V Zener	
D7	MM3Z6V8ST1	16 V Zener	
J1	VIN connector	$198-264$ Vac	
J2	Lamp connector		

5.1 Board schematic

Figure 4. Board schematic

Appendix A Magnetic components data

Figure 5. Pulse transformer (T2) datasheet

Figure 6. Ballast choke (L1) datasheet

All the items, except those defined "safety transformers in compliance to the European standards EN61558-1 and EN61558-2-6" in our catalogue, are supplied as a semi-finished component for specific use into electronic equipments designed by the client. Type testing and any other valuation necessary to verify the compliance of the characteristics of the transformer with the technical, safety and any other requirement have to be done by the user, before using. Each requirement and test has to be requested in writing ; without written instructions the product will be tested according to our Quality System standards.
ST1-ENG rev. 01-16/06/2010
subject to change without notice

1 Some data can be changed following type tests
Only take into account materials actually present

Revision history

Table 4. Revision history

Date	Revision	Changes
07-Mar-2011	1	Initial release.
28-Nov-2011	2	Updated Section 2 and Table 3.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX21610EVKIT\# MAX6951EVKIT MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT TLC59116EVM$\underline{390} 1216.1013$ TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $1270 \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002}$ $\underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500} \underline{1293.1100} \underline{1282.1400}$

