

4 x 50 W PWM digital input power amplifier with built-in diagnostics features and low voltage operation

Data brief - production data

Features

- Integrated 108 dB D/A conversion
- I²S and TDM digital input (3.3/1.8 V)
- Input sampling frequency: 44.1 kHz, 48 kHz, 96 kHz, 192 kHz
- MOSFET power outputs
- EMI control for FM/AM compatibility
- EMI compliance at the CEI EN 55025 (2009-10)
- · Dithering possibility
- Very low external component count filter
- · Output lowpass filter included in the feedback
- Low radiation function (LRF)
- Max. output power
 - $-4 \times 50 \text{ W/4 } \Omega \text{ @ } 15.2 \text{ V, } 1 \text{ kHz}$
- · High output power capability
 - 28 W/4 Ω 10 % THD, Vd = 14.4 V
- Full I²C bus driving (3.3/1.8 V):
 - Independent front/rear soft play/ mute
 - I²C bus diagnostics (including DC and AC load detection, test signal internally generated)
- Very flexible fault detection though integrated diagnostic
- Offset detector (play or mute mode)
- Four independent short circuit protection
- Clipping detector

- C-MOS compatible enable pin (3.3/5 V)
- ESD protection
- 6 V operation ("Start Stop")

Description

The FDA450LV is a new BCD- SOI (silicon on insulation) technology QUAD BRIDGE class D amplifier, specially intended for car radio applications.

Thanks to the technology used, it is possible to integrate a high performance D/A converter together with powerful MOSFET outputs in class D, to get an outstanding efficiency compared with the standard class AB.

The integrated D/A converter allows to reach outstanding performances (110 dB S/N ratio with 108 dB of dynamic range). The feedback loop includes the output L-C low-pass filter, allowing superior frequency response linearity and lower distortion independently of the inductor and capacitor quality.

FDA450LV is fully configurable through I²C bus interface and integrates a full diagnostics array specially intended for automotive applications.

Thanks to the solutions implemented to solve the EMI problems, the device is conceived to be used in the standard single DIN car-radio box together with the tuner.

The possibility to parallelize the outputs allows to drive both 2 Ω and 1 Ω speakers.

Moreover FDA450LV is able to work with power supply as low as 6 V, thus supporting the most recent low voltage ('start-stop') car-makers specification.

Table 1. Device summary

Order code	Package	Packing
FDA450LV	TQFP100 (exp. pad up)	Tray

Contents FDA450LV

Contents

1	Block diagram and pins description	3
2	Package information	6
3	Revision history	7

Block diagram and pins description

Figure 1. Block diagram CD/DIAG Enable 2 Enable 1 Enable 3 PLL Current Scrambler ch1 Generators Transreristance I2S-CLK I2S PWM Interpolato Transreristance Power Amplifier PWM Current Scrambler ch3 Generators Array Transreristano Power Amplifier PWM Scrambler Generators Transreristance Power Amplifier GAPGPS00495

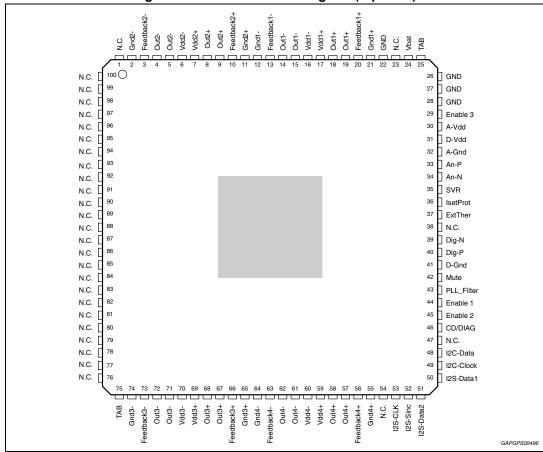
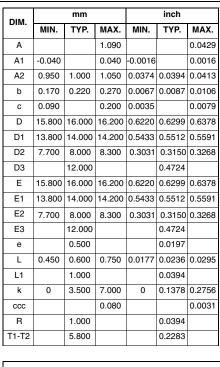


Table 2. Pins list description

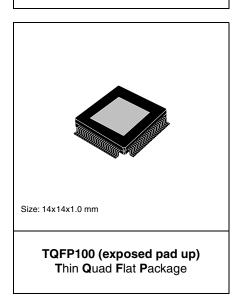
N#	Pin	Function	
1	N.C.	Not connected	
2	Gnd2-	Channel 2, half bridge a Power Ground	
3	Feedback2-	Channel 2 half bridge a Feedback	
4	Out2-	Channel 2 half bridge a Output	
5	Out2-	Channel 2 half bridge a Output	
6	Vdd2-	Channel 2 half bridge a Power Supply	
7	Vdd2+	Channel 2 half bridge b Power Supply	
8	Out2+	Channel 2 half bridge b Output	
9	Out2+	Channel 2 half bridge b Output	
10	Feedback2+	Channel 2 half bridge b Feedback	
11	Gnd2+	Channel 2, half bridge b Power Ground	
12	Gnd1-	Channel 1, half bridge a Power Ground	
13	Feedback1-	Channel 1 half bridge a Feedback	
14	Out1-	Channel 1 half bridge a Output	
15	Out1-	Channel 1 half bridge a Output	
16	Vdd1-	Channel 1 half bridge a Power Supply	
17	Vdd1+	Channel 1 half bridge b Power Supply	
18	Out1+	Channel 1 half bridge b Output	
19	Out1+	Channel 1 half bridge b Output	
20	Feedback1+	Channel 1 half bridge b Feedback	
21	Gnd1+	Channel 1, half bridge b Power Ground	
22	Gnd	Ground	
23	N.C.	Not connected	
24	Vbat	Power supply	
25	TAB	-	
26	GND	Ground	
27	GND	Ground	
28	GND	Ground	
29	Enable 3	Chip Enable 3	
30	A-Vdd	Analog Power Supply	
31	D-Vdd	Digital Power Supply	
32	A-Gnd	Analog Ground	
33	An-P	Positive Analog Supply V(svr)+1.65 (Internally generated)	
34	An-N	Negative Analog Supply V(svr)-1.65 (Internally generated)	
35	SVR	Supply Voltage Ripple Rejection Capacitor	
36	IsetProt	Current Protection Resistor Setting	
37	ExtTher	External Thermal Protection Input	
38	N.C.	Not connected	
39	Dig-N	Negative Digital Supply V(svr)-1.65 (Internally generated)	

Table 2. Pins list description (continued)

N#	Pin	Function	
40	Dig-P	Positive Digital Supply V(svr)+1.65 (Internally generated)	
41	D-Gnd	Digital Ground	
42	Mute	Mute Input (10uA source current)	
43	PLL_Filter	PLL Filter Network	
44	Enable 1	Chip Enable 1	
45	Enable 2	Chip Enable 2	
		Clip detector and diagnostic output:	
46	CD/DIAG	Overcurrent protection intervention	
	02/2 !! 10	Thermal warning	
47		Offset detection	
47	N.C.	Not connected	
48	I2C-Data	I2C Data Input	
49	I2C-Clock	I2C Data Clock	
50	I2S-Data1	I2S/TDM Data 1 Input	
51	I2S Data 2	I2S/TDM Data 2 Input	
52	I2S-Sinc	I2S/TDM Sinc Input	
53	I2S-CLK	I2S/TDM Clock Input	
54	N.C.	Not connected	
55	Gnd4+	Channel 4, half bridge + Power Ground	
56	Feedback4+	Channel 4 half bridge + Feedback	
57	Out4+	Channel 4 half bridge + Output	
58	Out4+	Channel 4 half bridge + Output	
59	Vdd4+	Channel 4 half bridge + Power Supply	
60	Vdd4-	Channel 4 half bridge - Power Supply	
61	Out4-	Channel 4 half bridge - Output	
62	Out4-	Channel 4 half bridge - Output	
63	Feedback4-	Channel 4 half bridge - Feedback	
64	Gnd4-	Channel 4, half bridge - Power Ground	
65	Gnd3+	Channel 3, half bridge + Power Ground	
66	Feedback3+	Channel 3 half bridge + Feedback	
67	Out3+	Channel 3 half bridge + Output	
68	Out3+	Channel 3 half bridge + Output	
69	Vdd3+	Channel 3 half bridge + Power Supply	
70	Vdd3-	Channel 3 half bridge - Power Supply	
71	Ou3-	Channel 3 half bridge - Output	
72	Out3-	Channel 3 half bridge - Output	
73	Feedback3-	Channel 3 half bridge - Feedback	
74	Gnd3-	Channel 3, half bridge - Power Ground	
75	TAB	-	
76 to 100	N.C.	Not connected	


Package information FDA450LV

2 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

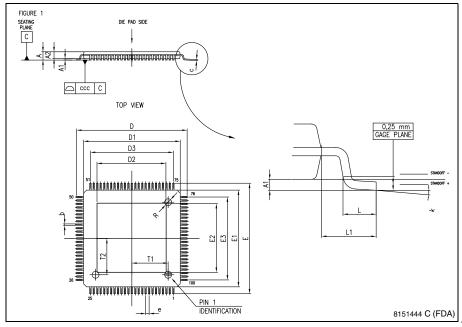

ECOPACK® is an ST trademark.

Figure 3. TQFP100 (exposed pad up) mechanical data and package dimensions

OUTLINE AND MECHANICAL DATA

577

FDA450LV Revision history

3 Revision history

Table 3. Document revision history

Date	Revision	Changes
18-Jul-2013	1	Initial release.
18-Sep-2013	2	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T

TDA7563AH SSM2529ACBZ-R7 SSM2518CBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2

SSM2375CBZ-REEL7 IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T

MAX9724AEBC+TG45 LA4450L-E IS31AP2036A-CLS2-TR MAX9723DEBE+T TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7

MP1720DH-12-LF-P SABRE9601K THAT1646W16-U MAX98396EWB+ PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR

BD37512FS-E2 BD37543FS-E2 BD3814FV-E2 TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP-500 FDA4100LV MAX98306ETD+T TS4994EIJT NCP2820FCT1G NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1

OPA1604AIPWR