

HDMI2C1-5DIJ

ESD protection and signal booster for HDMI[™] 1.3 Tx control links

Features

- HDMI 1.3. compliant from -40 to 85 °C
- CEC, DDC, 5 V and HPD 8 kV contact ESD protection
- Integrated I²C bi-directional reshaping circuit and level-shifter
- Integrated CEC bi-directional level-shifter with dV/dt limiter
- Supports direct connection to low-voltage HDMI ASICs (down to 1.8 V)
- Backdrive current protection on all I/O pins
- HDMI short-circuit and overcurrent protection on 5 V output
- Long HDMI cable drive support
- 500 µm pitch

Benefits

- Most stringent ESD standards compliance guaranteed at system level
- Full protection of ultra-sensitive HDMI ASICs
- Optimized HDMI control signal shapes guaranteed at connector level
- Signal booster for long HDMI cable support
- High integration
- Companion chip for HDMIULC6-xxx6 ultralarge bandwidth ESD protection for TMDS links
- Companion chip for STMicroelectronics' STixxxx HDMI HD decoders.
- Referenced in STi7111-SAT-MB-V1.2-011 reference design from STMicroelectronics

Complies with the following standards:

- IEC 61000-4-2 level 4
- JESD22-A114D level 2

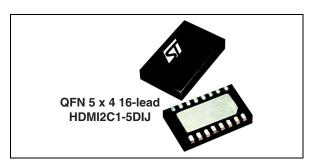
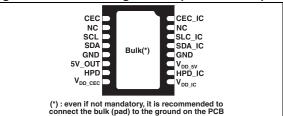



Figure 1. Pin configuration (bottom view)

Applications

- Consumer and computer electronics
- HD set-top boxes, DVD and flat television sets
- PC graphic cards

Description

The HDMI2C1-5DIJ is a fully integrated ESD protection, level-shifting device and signal booster for control links of HDMI 1.3 transmitters.

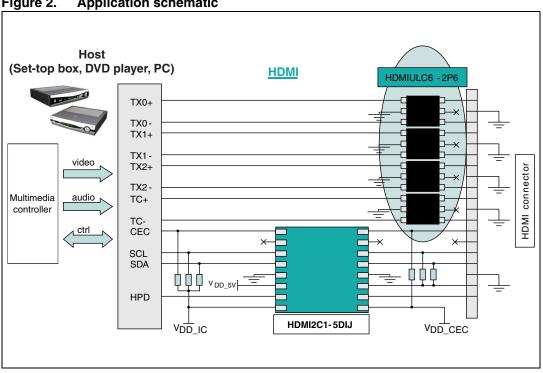
This device is a bi-directional isolation buffer, integrating hysteresis and signal boosters for maximum system robustness and signal integrity. All these features are provided in a single 16-lead QFN package featuring straightforward routing.

The HDMI2C1-5DIJ is a simple plug and play device that provides HDMI designers with an easy way to gain full compliance with the stringent HDMI 1.3 CTS on a wide temperature range.

TM: HDMI, the HDMI logo and High-Definition Multimedia Interface are tradmarks or registered trademarks of HDMI Licensing LLC.

Application information 1

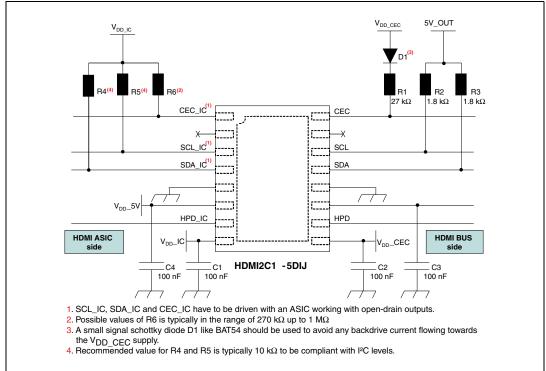
1.1 Power on reset


In order to activate the CEC and DDC lines, both following conditions must be respected:

- $V_{DD 5V} > V_{DD ON}$ (see *Table 3*)
- Both inputs of the bi-directional level shifters must be set to a high level at the same time

CEC input and output levels in high-level 1.2

When the CEC signal is set to a high level (idle-state), pin 1 and pin 16 voltages can be different as the HDMI2C1-5DIJ works as a level-shifter. The line is then considered in open circuit between these two pins. Low levels are identical on both sides.


1.3 **Schematics**

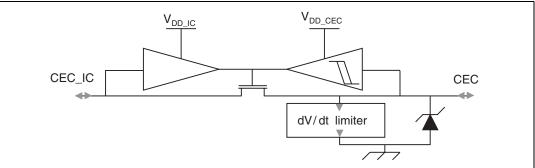
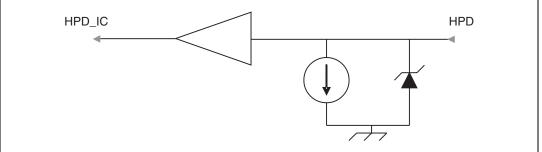
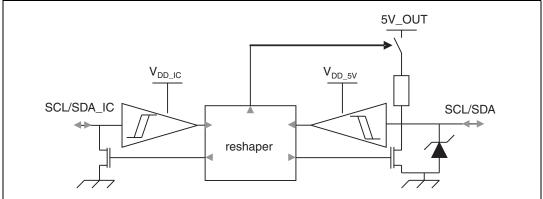


Table 1. Pin descriptions


PinNameDescription1CEC_ICConsumer electronic control (HDMI ASIC side)2N.C3SLC_ICDDC I°C clock line (HDMI ASIC side)4SDA_ICDDC I°C data line (HDMI ASIC side)5GNDGround5GNDGround7HPD_ICHot plug detect signal (HDMI ASIC side)8V _{DD_IC} ASIC logic level reference voltage9V _{DD_CEC} CEC line logic level reference voltage10HPDHot plug detect signal (HDMI bus side)115V_OUTCurrent limiter output (HDMI bus side)12GNDGround13SDADDC I°C data line (HDMI Bus side)14SCLDDC I°C clock line (HDMI Bus side)15N.C16CECConsumer electronic control (HDMI Bus side)	Tuble I						
2 N.C.	Pin	Name	Description				
3SLC_ICDDC I²C clock line (HDMI ASIC side)4SDA_ICDDC I²C data line (HDMI ASIC side)5GNDGround6V_DD_5V5 V supply7HPD_ICHot plug detect signal (HDMI ASIC side)8V_DD_ICASIC logic level reference voltage9V_DD_CECCEC line logic level reference voltage10HPDHot plug detect signal (HDMI bus side)115V_OUTCurrent limiter output (HDMI bus side)12GNDGround13SDADDC I²C data line (HDMI Bus side)14SCLDDC I²C clock line (HDMI Bus side)15N.C	1	CEC_IC	Consumer electronic control (HDMI ASIC side)				
4SDA_ICDDC I²C data line (HDMI ASIC side)5GNDGround6V_DD_5V5 V supply7HPD_ICHot plug detect signal (HDMI ASIC side)8V_DD_CECASIC logic level reference voltage9V_DD_CECCEC line logic level reference voltage10HPDHot plug detect signal (HDMI bus side)115V_OUTCurrent limiter output (HDMI bus side)12GNDGround13SDADDC I²C data line (HDMI Bus side)14SCLDDC I²C clock line (HDMI Bus side)15N.C	2	N.C.					
5GNDGroundI.1.5GNDGroundIS6V _{DD_5V} 5 V supplyIS7HPD_ICHot plug detect signal (HDMI ASIC side)IS8V _{DD_IC} ASIC logic level reference voltageIS9V _{DD_CEC} CEC line logic level reference voltageIS10HPDHot plug detect signal (HDMI bus side)IS115V_OUTCurrent limiter output (HDMI bus side)IS12GNDGroundIS13SDADDC I²C data line (HDMI Bus side)14SCLDDC I²C clock line (HDMI Bus side)15N.C	3	SLC_IC	DDC I ² C clock line (HDMI ASIC side)				
5GNDGround6VDD_5V5 V supply7HPD_ICHot plug detect signal (HDMI ASIC side)8VDD_ICASIC logic level reference voltage9VDD_CECCEC line logic level reference voltage10HPDHot plug detect signal (HDMI bus side)115V_OUTCurrent limiter output (HDMI bus side)12GNDGround13SDADDC I²C data line (HDMI Bus side)14SCLDDC I²C clock line (HDMI Bus side)15N.C	4	SDA_IC	DDC I ² C data line (HDMI ASIC side)	1			
6V_{DD_5V}5 V supply	5	GND	Ground				
7HPD_ICHot plug detect signal (HDMI ASIC side)8V_DD_ICASIC logic level reference voltage9V_DD_CECCEC line logic level reference voltage10HPDHot plug detect signal (HDMI bus side)115V_OUTCurrent limiter output (HDMI bus side)12GNDGround13SDADDC I²C data line (HDMI Bus side)14SCLDDC I²C clock line (HDMI Bus side)15N.C	6	V _{DD_5V}	5 V supply				
8 V _{DD_IC} ASIC logic level reference voltage 9 V _{DD_CEC} CEC line logic level reference voltage 10 HPD Hot plug detect signal (HDMI bus side) 11 5V_OUT Current limiter output (HDMI bus side) 12 GND Ground 13 SDA DDC I ² C data line (HDMI Bus side) 14 SCL DDC I ² C clock line (HDMI Bus side) 15 N.C.	7	HPD_IC	Hot plug detect signal (HDMI ASIC side)				
9 V _{DD_CEC} CEC line logic level reference voltage 10 HPD Hot plug detect signal (HDMI bus side) 11 5V_OUT Current limiter output (HDMI bus side) 12 GND Ground 13 SDA DDC I ² C data line (HDMI Bus side) 14 SCL DDC I ² C clock line (HDMI Bus side) 15 N.C.	8	V _{DD_IC}	ASIC logic level reference voltage				
10 HPD Hot plug detect signal (HDMI bus side) 11 5V_OUT Current limiter output (HDMI bus side) 12 GND Ground 13 SDA DDC I ² C data line (HDMI Bus side) 14 SCL DDC I ² C clock line (HDMI Bus side) 15 N.C.	9	V _{DD_CEC}	CEC line logic level reference voltage				
11 5V_OUT Current limiter output (HDMI bus side) 12 GND Ground 13 SDA DDC I ² C data line (HDMI Bus side) 14 SCL DDC I ² C clock line (HDMI Bus side) 15 N.C.	10	HPD	Hot plug detect signal (HDMI bus side)				
12 GND Ground 13 SDA DDC I ² C data line (HDMI Bus side) QFN 5 X 4 16-lead Top view 14 SCL DDC I ² C clock line (HDMI Bus side) Top view 15 N.C.	11	5V_OUT	Current limiter output (HDMI bus side)				
13 SDA DDC I ² C data line (HDMI Bus side) Top view 14 SCL DDC I ² C clock line (HDMI Bus side) Top view 15 N.C.	12	GND	Ground				
14 SCL DDC I ² C clock line (HDMI Bus side) 15 N.C.	13	SDA	DDC I ² C data line (HDMI Bus side)				
	14	SCL	DDC I ² C clock line (HDMI Bus side)				
16 CEC Consumer electronic control (HDMI Bus side)	15	N.C.					
	16	CEC	Consumer electronic control (HDMI Bus side)				



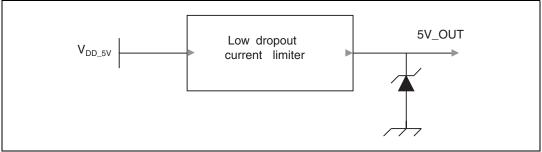


Figure 6. DDC link functional schematic

Figure 7. 5 V link functional schematic

2 **Characteristics**

Table 2. **Absolute ratings**

Symbol	Parameter	Parameter Test conditions			
V _{pp_BUS}	ESD discharge on HDMI BUS side (pin 10, 11, 13, 14,16), IEC 61000-4-2 level 4 Contact discharge			kV	
V _{pp_IC}	ESD discharge (all pins), HBM JESD22-A114D level 2	±2	kV		
T _{stg}	Storage temperature range	-55 to +150	°C		
T _{op}	Operating temperature range	-40 to +85	°C		
Τ _L	Maximum lead temperature for soldering during 10 s	260	°C		
V _{DD_5V} V _{DD_IC} V _{DD_CEC}	Supply voltages			V	
I _{DDC_IC}	Maximum allowed current sunk by SDA_IC or SCL_IC	1.5	mA		

1. With a 100 nF capacitor connected to the 5 V output pin.

Table 3. Power supply characteristics

Symbol	Parameter	meter Test conditions		Value		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{DD_CEC}	CEC supply voltage		2.97	3.3	3.63	V
V _{DD_IC}	Low-voltage supply		1.62		3.63	V
V _{DD_5V}	5 V input supply voltage range		4.9		5.3	V
V _{DD_ON} ⁽¹⁾	Power on reset				4.1	V
I _{QS_5V}		$V_{DD_{5V}} = 5 V, V_{DD_{1C}} = 1.8 V,$			1000	
I _{QS_IC}	Quiescent currents on V _{DD 5V} , V _{DD IC} , V _{DD CEC}	$V_{DD_{CEC}} = 3.3 V$ Idle-state on CEC and DDC links,			75	μΑ
I _{QS_CEC}		HPD and 5V_OUT links open			150	

In order to activate the CEC and DDC lines, both the following conditions must be respected:
 V_{DD_5V} > V_{DD_0N}
 Both inputs of the bi-directional level shifters must be set to a high level at the same time.

Table 4. CEC electrical characteristics ⁽¹⁾	characteristics ⁽¹⁾	
--	--------------------------------	--

Symbol	Parameter	Test conditions	Test conditions			Unit
Symbol	Parameter	rest conditions	Min.	Тур.	Max.	Unit
V _{Tup_CEC}	Upward input voltage threshold on bus side				2.0	V
V _{Tdown_CEC}	Downward input voltage threshold on bus side		0.8			V
V _{HYST_CEC}	Input hysteresis on bus side			0.4		V
T _{RISE_CEC}	Output rise-time	$R_{UP} = 27 \text{ k}\Omega \pm 5\%$	25 ⁽²⁾		250	μs
T _{FALL_CEC}	Output fall-time	$R_{UP} = 27 \text{ k}\Omega \pm 5\%$			50	μs
I _{OFF_CEC}	Leakage current in powered- off state	$V_{DD_{5V}} = 0 V, V_{DD_{IC}} = 0 V,$ $V_{DD_{CEC}} = 3.3 V$			1.8	μA
V _{IL_CEC_IC}	Input low level on IC side		30			%V _{DD_IC}
V _{IH_CEC_IC}	Input high level on IC side				70	%V _{DD_IC}
R _{ON_CEC}	On resistance across CEC and CEC_IC pins	CEC pin to 0 V		115	160	Ω
C _{in_CEC}	Input capacitance on CEC link			17	25 ⁽³⁾	pF

1. T_{amb} = 25 °C, V_{DD_CEC} = 3.3 V, V_{DD_5V} = 5 V, unless otherwise specified.

2. The dV/dt limiter is used to ensure a minimum rise-time when a minimum load is connected to the link.

3. Maximum capacitance allowed at connector output is 200 pF in HDMI 1.3 specification.

Table 5. HDMI 5V_out current limiter electrical characteristics ($T_{amb} = 25 \text{ °C}$, $V_{DD 5V} = 5 \text{ V}$)

Symbol	Parameter Test conditions		Value			Unit
Symbol	Faiametei		Min.	Тур.	Max.	Onic
V _{DROP}	Drop-out voltage	I _{5V_OUT} = 55 mA	20	50	95 ⁽¹⁾	mV
I _{5V_OUT}	Output current	$V_{5V_{OUT}} = 0 V$	55		115 ⁽²⁾	mA

1. HDMI 1.3 specification requires a maximum of 100 mV voltage-drop.

2. Maximum allowed output current is 500 mA when the sink is powered off in HDMI 1.3 specification.

Table 6. Hot-plug detect electrical characteristics ($T_{amb} = 25 \text{ °C}$, $V_{DD_{-5V}} = 5 \text{ V}$)

Symbol	Parameter	Test conditions	Value			Unit
Symbol	i alametei		Min.	Тур.	Max.	Onic
I _{PULL_DOWN}	Pull-down current			13	25	μA
V _{IL_HPD}	Input low-level		1			V
V _{IH_HPD}	Input high-level				1.7	V

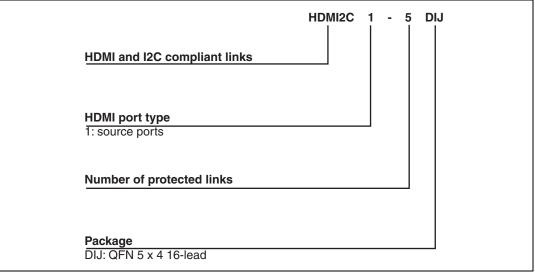
Demonster	Testessilitiens	Value			
Parameter	lest conditions	Min.	Тур.	Max.	Unit
Upward input voltage threshold on bus side				3.5	v
Downward input voltage threshold on bus side		1.5			v
Input hysteresis on bus side		1		1.3	V
Output low-level	Current sunk by SDA or SCL pin is 3 mA			350	mV
Output rise-time (30%-70%)	$\begin{array}{l} C_{\text{BUS}} = 750 \ \text{pF}^{(2)}, \\ R_{\text{UP}} = 2 \ \text{k}\Omega / \! / 47 \ \text{k}\Omega + 10 \ \%^{(3)} \end{array}$			900	ns
Output fall-time (30%-70%)				250	ns
Upward input voltage threshold on IC side		55		65	%V _{DD_IC}
Downward input voltage threshold on IC side		35		45	%V _{DD_IC}
Output low-level on IC side	Current sunk by SDA_IC or SCL_IC pins is 500 µA			324 ⁽⁴⁾	mV
Input capacitance on DDC link			11	17 ⁽⁵⁾	pF
	threshold on bus side Downward input voltage threshold on bus side Input hysteresis on bus side Output low-level Output rise-time (30%-70%) Output fall-time (30%-70%) Upward input voltage threshold on IC side Downward input voltage threshold on IC side	Upward input voltage threshold on bus sideUpward input voltage threshold on bus sideDownward input voltage threshold on bus sideInput hysteresis on bus sideInput hysteresis on bus sideCurrent sunk by SDA or SCL pin is 3 mAOutput low-levelCurrent sunk by SDA or SCL pin is 3 mAOutput rise-time (30%-70%) $C_{BUS} = 750 \text{ pF}^{(2)},$ $R_{UP} = 2 \text{ k}\Omega // 47 \text{ k}\Omega + 10 \%^{(3)}$ Output fall-time (30%-70%)Upward input voltage threshold on IC sideDownward input voltage threshold on IC sideCurrent sunk by SDA_IC or SCL_IC pins is 500 µAOutput low-level on IC sideVDD_5V = 0 V, VDD_IC = 0 V, VDD_CEC = 0 V, VBIAS = 0 V,	Min.Upward input voltage threshold on bus sideMin.Downward input voltage threshold on bus side1.5Input hysteresis on bus side1Output low-levelCurrent sunk by SDA or SCL pin is 3 mAOutput rise-time (30%-70%) $C_{BUS} = 750 \text{ pF}^{(2)},$ $R_{UP} = 2 \text{ k}\Omega // 47 \text{ k}\Omega + 10 \%^{(3)}$ Output fall-time (30%-70%)Upward input voltage threshold on IC sideDownward input voltage threshold on IC side55Output low-level on IC sideCurrent sunk by SDA_IC or SCL_IC pins is 500 µAInput capacitance on DDC link $V_{DD_SV} = 0 \text{ V}, V_{DD_IC} = 0 \text{ V},$ $V_{DD_CEC} = 0 \text{ V}, V_{BIAS} = 0 \text{ V},$	Min.Typ.Upward input voltage threshold on bus side1Downward input voltage threshold on bus side1.5Input hysteresis on bus side1Output low-levelCurrent sunk by SDA or SCL pin is 3 mA1Output rise-time (30%-70%) $C_{BUS} = 750 \text{ pF}^{(2)},$ $R_{UP} = 2 \text{ k}\Omega // 47 \text{ k}\Omega + 10 \%^{(3)}$ -Output fall-time (30%-70%)0-Upward input voltage threshold on IC side55-Downward input voltage threshold on IC side35-Output low-level on IC sideCurrent sunk by SDA_IC or SCL_IC pins is 500 μ A-Input capacitance on DDC link $V_{DD_CEC} = 0 \text{ V}, \text{ V}_{BIAS} = 0 \text{ V},$ 11	Min.Typ.Max.Upward input voltage threshold on bus side3.5Downward input voltage threshold on bus side1.5Input hysteresis on bus side1Input hysteresis on bus side1Output low-levelCurrent sunk by SDA or SCL pin is 3 mAOutput rise-time (30%-70%) $C_{BUS} = 750 \text{ pF}^{(2)}$, $R_{UP} = 2 \text{ k}\Omega // 47 \text{ k}\Omega + 10 \%^{(3)}$ Output fall-time (30%-70%)250Upward input voltage threshold on IC side55Downward input voltage threshold on IC side35Output low-level on IC sideCurrent sunk by SDA_IC or SCL_IC pins is 500 μ AInput capacitance on DDC link $V_{DD_SV} = 0 \text{ V}, \text{ V}_{DD_AC} = 0 \text{ V}, \text{ V}_{DD_AC} = 0 \text{ V}, \text{ V}_{DD_CEC} = 0 \text{ V}, \text{ V}_{BIAS} = 0 \text{ V},$

Table 7.	DDC SDA/SCL electrical characteristics ⁽¹⁾
Table 7.	DDC SDA/SCL electrical characteristics ⁽

1. $T_{amb} = 25 \text{ °C}, V_{DD_{-}5V} = 5 \text{ V}$, unless otherwise specified.

2. Maximum load capacitance allowed on I2C entire link (cable plus connectors) is 750 pF in HDMI spec. 1.3.

3. Two pull-up resistors in parallel (sink + source). Typical value is 47 k Ω and maximum value is 47 k Ω + 10% in HDMI 1.3 specification.


4. $V_{OL_{IC}} = 0.2^* V_{DD_{IC}}$ (min).

5. Maximum capacitance allowed at connector output is 50 pF in HDMI spec. 1.3.

3 Ordering information scheme

4 Package information

- Epoxy meets UL94, V0
- Lead-free packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 8.QFN 5 x 4 16 leads dimensions

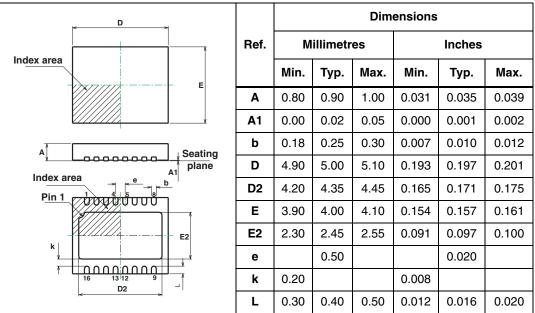
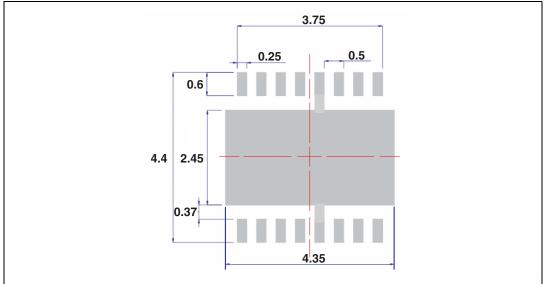



Figure 9. QFN 5 x 4 16-lead footprint (dimensions in mm)

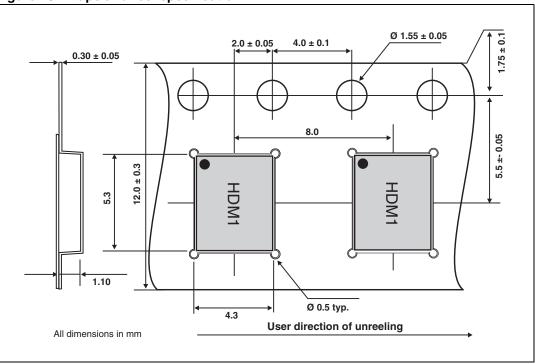


Figure 10. Tape and reel specification

5 Ordering information

Table 9.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
HDMI2C1-5DIJ	HDM1	QFN 5x4 16-lead	60 mg	3000	Tape and reel

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
05-Feb-2009	1	Initial release.
18-Mar-2009	2	Added <i>Table 1</i> Pin descriptions. Updated <i>Figure 2</i> and <i>Figure 3</i> for connection of resistor R4 to HPD.
19-May-2011	3	 Figure 1: add "NC" to not connected pins change "GND" ref of the pad into "bulk" reference add comment about the "bulk" on the bottom Figure 9: connect "GND" pins to the heatsink copper surface. Updated Figure 2 and Figure 3. Table 2: Updated V_{pp}_Bus parameter.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - Specialised category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

CY7C910-51LMB MC33689DPEWR2 MC33975ATEKR2 MEC1632-AUE NVT4555UKZ RKSAS4 HMC677G32 LPC47N207-JV FTP-637DSL633R SM712GX04LF04-BA MC33689DPEW PCA9704PWJ MCW1001A-I/SS HOA6241-001 SC74HC4066ADTR2G AS3935-BQFT NCN5120MNTWG NCN5150DR2G NCN8025MTTBG C100N50Z4A SRT2-ATT01 TDA8035HN/C1/S1J TLE9221SXXUMA2 DS90UB947TRGCRQ1 SP510ECF-L NCS2300MUTAG HMC677LP5E LTC1756EGN#PBF LTC1955EUH#PBF MXL1543BCAI MAX3170CAI+ XL1192D ST8024CTR TLE9221SX KTU1109EFAA-TR CH368L CH7307C-DEF LTC1694IS5#TRM LTS 25-NP 73S8024RN-20IMF 73S8024RN-IL/F 78P2352-IGT/F DS2406+ DS2413P+ DS2406P+T&R DS2413P+T&R DS28E17Q+ DS8113-RNG+ MAX13036ATI+ MAX13174ECAG+