DMOS driver for 3-phase brushless DC motor

Datasheet - production data

Features

- Operating supply voltage from 8 to 52 V
- 5.6 A output peak current (2.8 A DC)
- $R_{D S(O N)} 0.3 \Omega$ typ. value at $T_{j}=25^{\circ} \mathrm{C}$
- Operating frequency up to 100 KHz
- Non-dissipative overcurrent detection and protection
- Diagnostic output
- Constant toff PWM current controller
- Slow decay synchr. rectification
- 60° and 120° hall effect decoding logic
- Brake function
- Tachometer output for speed loop
- Cross conduction protection
- Thermal shutdown
- Undervoltage lockout
- Integrated fast freewheeling diodes

Description

The L6235 device is a DMOS fully integrated 3phase motor driver with overcurrent protection.
Realized in BCD technology, the device combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip.

The device includes all the circuitry needed to drive a 3-phase BLDC motor including: a 3-phase DMOS bridge, a constant off time PWM current controller and the decoding logic for single ended hall sensors that generates the required sequence for the power stage.

Available in PowerSO36 and SO24 (20 + 2 + 2) packages, the L 6235 device features a nondissipative overcurrent protection on the high-side power MOSFETs and thermal shutdown.

Contents

1 Block diagram 3
2 Maximum ratings 4
3 Pin connections 6
4 Electrical characteristics 8
5 Circuit description 11
5.1 Power stages and charge pump 11
5.2 Logic inputs 12
6 PWM current control 13
7 Slow decay mode 17
8 Decoding logic 18
9 Tachometer 20
10 Non-dissipative overcurrent detection and protection 22
11 Application information 25
11.1 Output current capability and IC power dissipation 26
11.2 Thermal management 27
12 Package information 30
12.1 PowerSO36 package information 30
12.2 SO24 package information 32
13 Revision history 33

1 Block diagram

Figure 1. Block diagram

2 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Test conditions	Value	Unit
V_{S}	Supply voltage	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}$	60	V
$\mathrm{V}_{\text {OD }}$	Differential voltage between: $\mathrm{VS}_{\mathrm{A}}, \mathrm{OUT}_{1}, \mathrm{OUT}_{2}, \mathrm{SENSE}_{\mathrm{A}}$ and $\mathrm{VS}_{\mathrm{B}}, \mathrm{OUT}_{3}$, SENSE $_{B}$	$\begin{gathered} \mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}=60 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{SENSEA}}=\mathrm{V}_{\text {SENSEB }}=\mathrm{GND} \end{gathered}$	60	V
$V_{\text {BOOT }}$	Bootstrap peak voltage	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}$	$\mathrm{V}_{\mathrm{S}}+10$	V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {EN }}$	Logic inputs voltage range	-	-0.3 to 7	V
$V_{\text {REF }}$	Voltage range at pin VREF	-	-0.3 to 7	V
$\mathrm{V}_{\text {RCofF }}$	Voltage range at pin RCOFF	-	-0.3 to 7	V
$\mathrm{V}_{\text {RCPULSE }}$	Voltage range at pin RCPULSE	-	-0.3 to 7	V
$V_{\text {SENSE }}$	Voltage range at pins $\mathrm{SENSE}_{\mathrm{A}}$ and $\mathrm{SENSE}_{\mathrm{B}}$	-	-1 to 4	V
$\mathrm{I}_{\text {(peak) }}$	Pulsed supply current (for each VS_{A} and VS_{B} pin)	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}} ; \mathrm{T}_{\text {PULSE }}<1 \mathrm{~ms}$	7.1	A
Is	DC supply current (for each VS_{A} and VS_{B} pin)	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}$	2.8	A
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{OP}}$	Storage and operating temperature range	-	-40 to 150	${ }^{\circ} \mathrm{C}$

Table 2. Recommended operating condition

Symbol	Parameter	Test conditions	Min.	Max.	Unit
V_{S}	Supply voltage	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}$	12	52	V
V_{OD}	Differential voltage between: $\mathrm{VS}_{\mathrm{A}}, \mathrm{OUT}_{1}, \mathrm{OUT}_{2}$, SENSE $_{\mathrm{A}}$ and $\mathrm{VS}_{\mathrm{B}}, \mathrm{OUT}_{3}$, SENSE $_{B}$	$\begin{gathered} V_{S A}=V_{S B}=V_{S} ; \\ V_{\text {SENSEA }}=V_{\text {SENSEB }} \end{gathered}$	-	52	V
$\mathrm{V}_{\text {REF }}$	Voltage range at pin VREF	-	-0.1	5	V
$V_{\text {SENSE }}$	Voltage range at pins SENSE $_{\text {A }}$ and SENSE $_{\text {B }}$	$\begin{gathered} \text { (pulsed } \left.\mathrm{t}_{\mathrm{W}}<\mathrm{t}_{\text {rr }}\right) \\ (\mathrm{DC}) \end{gathered}$	$\begin{aligned} & \hline-6 \\ & -1 \end{aligned}$	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Iout	DC output current	$\mathrm{V}_{\mathrm{SA}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{S}}$	-	2.8	A
$\mathrm{f}_{\text {SW }}$	Switching frequency	-	-	100	KHz

Table 3. Thermal data

Symbol	Description	SO24	PowerSO36	Unit
$\mathrm{R}_{\text {th(j-pins) }}$	Maximum thermal resistance junction pins	14	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(j-case) }}$	Maximum thermal resistance junction case	-	1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(j-amb)1 }}$	Maximum thermal resistance junction ambient ${ }^{(1)}$	51	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(j-amb)1 }}$	Maximum thermal resistance junction ambient ${ }^{(2)}$	-	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(}}$-amb)1	Maximum thermal resistance junction ambient ${ }^{(3)}$	-	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th(j-amb)2 }}$	Maximum thermal resistance junction ambient ${ }^{(4)}$	77	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. Mounted on a multilayer FR4 PCB with a dissipating copper surface on the bottom side of $6 \mathrm{~cm}^{2}$ (with a thickness of $35 \mu \mathrm{~m})$.
2. Mounted on a multilayer FR4 PCB with a dissipating copper surface on the top side of $6 \mathrm{~cm}^{2}$ (with a thickness of $35 \mu \mathrm{~m}$).
3. Mounted on a multilayer FR4 PCB with a dissipating copper surface on the top side of $6 \mathrm{~cm}^{2}$ (with a thickness of $35 \mu \mathrm{~m}$), 16 via holes and a ground layer.
4. Mounted on a multilayer FR4 PCB without any heatsinking surface on the board.

3 Pin connections

Figure 2. Pin connections (top view)

1. The slug is internally connected to pins $1,18,19$ and 36 (GND pins).

Table 4. Pin description

Package		Name	Type	Function
SO24	PowerSO36			
Pin no.	Pin no.			
1	10	H_{1}	Sensor input	Single ended hall effect sensor input 1.
2	11	DIAG	Open drain output	Overcurrent detection and thermal protection pin. An internal open drain transistor pulls to GND when an overcurrent on one of the high-side MOSFETs is detected or during thermal protection.
3	12	$\mathrm{SENSE}_{\mathrm{A}}$	Power supply	Half-bridge 1 and half-bridge 2 source pin. This pin must be connected together with pin SENSE $_{\mathrm{B}}$ to power ground through a sensing power resistor.
4	13	RCOFF	RC pin	RC network pin. A parallel RC network connected between this pin and ground sets the current controller OFF-time.
5	15	OUT_{1}	Power output	Output 1

Table 4. Pin description (continued)

Package		Name	Type	Function
SO24	PowerSO36			
Pin no.	Pin no.			
6, 7, 18, 19	1, 18, 19, 36	GND	GND	Ground terminals. On SO24 package, these pins are also used for heat dissipation toward the PCB. On PowerSO36 package the slug is connected on these pins.
8	22	TACHO	Open drain output	Frequency-to-voltage open drain output. Every pulse from pin H_{1} is shaped as a fixed and adjustable length pulse.
9	24	RCPULSE	RC pin	RC network pin. A parallel RC network connected between this pin and ground sets the duration of the monostable pulse used for the frequency-to-voltage converter.
10	25	$\mathrm{SENSE}_{\mathrm{B}}$	Power supply	Half-bridge 3 source pin. This pin must be connected together with pin SENSE $_{\mathrm{A}}$ to power ground through a sensing power resistor. At this pin also the inverting input of the sense comparator is connected.
11	26	FWD/REV	Logic input	Selects the direction of the rotation. HIGH logic level sets forward operation, whereas LOW logic level sets reverse operation. If not used, it has to be connected to GND or +5 V .
12	27	EN	Logic input	Chip enable. LOW logic level switches OFF all power MOSFETs. If not used, it has to be connected to +5 V .
13	28	VREF	Logic input	Current controller reference voltage. Do not leave this pin open or connect to GND.
14	29	BRAKE	Logic input	Brake input pin. LOW logic level switches ON all highside power MOSFETs, implementing the brake function. If not used, it has to be connected to +5 V .
15	30	VBOOT	Supply voltage	Bootstrap voltage needed for driving the upper power MOSFETs.
16	32	OUT_{3}	Power output	Output 3.
17	33	VS_{B}	Power supply	Half-bridge 3 power supply voltage. It must be connected to the supply voltage together with pin VS_{A}.
20	4	VS A	Power supply	Half-bridge 1 and half-bridge 2 power supply voltage. It must be connected to the supply voltage together with pin VS_{B}.
21	5	OUT_{2}	Power output	Output 2.
22	7	VCP	Output	Charge pump oscillator output.
23	8	H_{2}	Sensor input	Single ended hall effect sensor input 2.
24	9	H_{3}	Sensor input	Single ended hall effect sensor input 3.

4 Electrical characteristics

Table 5. Electrical characteristics
($\mathrm{V}_{\mathrm{S}}=48 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {Sth(}}$ (ON)	Turn ON threshold	-	6.6	7.4	-	V
$\mathrm{V}_{\text {Sth(OFF) }}$	Turn OFF threshold	-	5.6	6	6.4	V
Is	Quiescent supply current	All bridges OFF; $\mathrm{T}_{\mathrm{j}}=-25 \text { to } 125^{\circ} \mathrm{C}^{(1)}$	-	5	10	mA
$\mathrm{T}_{\text {J(OFF) }}$	Thermal shutdown temperature	-	-	165	-	${ }^{\circ} \mathrm{C}$
Output DMOS transistors						
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	High-side switch ON resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	0.34	0.4	Ω
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}^{(1)}$	-	0.53	0.59	Ω
	Low-side switch ON resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	0.28	0.34	Ω
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}^{(1)}$	-	0.47	0.53	Ω
$\mathrm{I}_{\text {DSS }}$	Leakage current	$\mathrm{EN}=$ low; OUT = $\mathrm{V}_{\text {cc }}$	-	-	2	mA
		EN = low; OUT = GND	-0.15	-	-	mA
Source drain diodes						
$V_{S D}$	Forward ON voltage	$\mathrm{I}_{\mathrm{SD}}=2.8 \mathrm{~A}, \mathrm{EN}=\mathrm{LOW}$	-	1.15	1.3	V
t_{rr}	Reverse recovery time	$\mathrm{I}_{\mathrm{f}}=2.8 \mathrm{~A}$	-	300	-	ns
t_{fr}	Forward recovery time	-	-	200	-	ns
Logic input (H1, H2, H3, EN, FWD/REV, BRAKE)						
$\mathrm{V}_{\text {IL }}$	Low level logic input voltage	-	-0.3	-	0.8	V
V_{IH}	High level logic input voltage	-	2	-	7	V
$\mathrm{I}_{\text {IL }}$	Low level logic input current	GND logic input voltage	-10	-	-	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {I }}$	High level logic input current	7 V logic input voltage	-	-	10	$\mu \mathrm{A}$
$\left.\mathrm{V}_{\text {th(}} \mathrm{ON}\right)$	Turn-ON input threshold	-	-	1.8	2.0	V
$\mathrm{V}_{\text {th }}$ (OFF)	Turn-OFF input threshold	-	0.8	1.3	-	V
$\mathrm{V}_{\text {thHYS }}$	Input thresholds hysteresis	-	0.25	0.5	-	V
Switching characteristics						
$t_{\text {d(on)EN }}$	Enable to out turn-ON delay time ${ }^{(2)}$	$\mathrm{I}_{\text {LOAD }}=2.8 \mathrm{~A}$, resistive load	110	250	400	ns
$t_{D(\text { off)EN }}$	Enable to out turn-OFF delay time ${ }^{(2)}$	$\mathrm{I}_{\text {LOAD }}=2.8 \mathrm{~A}$, resistive load	300	550	800	ns
$t_{\text {d(on) }} \mathrm{N}^{\prime}$	Other logic inputs to output turn-ON delay time	ILOAD $=2.8 \mathrm{~A}$, resistive load	-	-	2	$\mu \mathrm{s}$
$t_{D(\text { (ff) })}$	Other logic inputs to out turn-OFF delay time	$\mathrm{I}_{\text {LOAD }}=2.8 \mathrm{~A}$, resistive load	-	-	2	$\mu \mathrm{s}$
$t_{\text {RISE }}$	Output rise time ${ }^{(2)}$	$\mathrm{I}_{\text {LOAD }}=2.8 \mathrm{~A}$, resistive load	40	-	250	ns
$\mathrm{t}_{\text {FALL }}$	Output fall time ${ }^{(2)}$	$\mathrm{I}_{\text {LOAD }}=2.8 \mathrm{~A}$, resistive load	40	-	250	ns
$t_{\text {DT }}$	Deadtime		0.5	1	-	$\mu \mathrm{s}$
f_{CP}	Charge pump frequency	$\mathrm{T}_{\mathrm{j}}=-25$ to $125{ }^{\circ} \mathrm{C}^{(1)}$	-	0.6	1	MHz

Table 5. Electrical characteristics (continued)
$\left(\mathrm{V}_{\mathrm{S}}=48 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
PWM comparator and monostable						
$\mathrm{I}_{\text {RCOFF }}$	Source current at pin $\mathrm{RC}_{\text {OFF }}$	$\mathrm{V}_{\text {RCOFF }}=2.5 \mathrm{~V}$	3.5	5.5	-	mA
$\mathrm{V}_{\text {OFFSET }}$	Offset voltage on sense comparator	$\mathrm{V}_{\text {ref }}=0.5 \mathrm{~V}$	-	± 5	-	mV
$\mathrm{t}_{\text {prop }}$	Turn OFF propagation delay ${ }^{(3)}$	$\mathrm{V}_{\text {ref }}=0.5 \mathrm{~V}$	-	500	-	ns
$\mathrm{t}_{\text {blank }}$	Internal blanking time on sense comparator	-	-	1	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{ON}(\text { min })}$	Minimum on time	-	-	1.5	2	$\mu \mathrm{s}$
$\mathrm{t}_{\text {OFF }}$	PWM recirculation time	$\mathrm{R}_{\text {OFF }}=20 \mathrm{k} \Omega$; $\mathrm{C}_{\text {OFF }}=1 \mathrm{nF}$	-	13	-	$\mu \mathrm{s}$
		$\mathrm{R}_{\text {OFF }}=100 \mathrm{k} \Omega ; \mathrm{C}_{\text {OFF }}=1 \mathrm{nF}$	-	61	-	$\mu \mathrm{s}$
$\mathrm{I}_{\text {BIAS }}$	Input bias current at pin VREF	-	-	-	10	$\mu \mathrm{A}$
TACHO monostable						
$\mathrm{I}_{\text {RCPULSE }}$	Source current at pin RCPULSE	$\mathrm{V}_{\text {RCPULSE }}=2.5 \mathrm{~V}$	3.5	5.5	-	mA
$\mathrm{t}_{\text {PULSE }}$	Monostable of time	$\mathrm{R}_{\text {PUL }}=20 \mathrm{k} \Omega ; \mathrm{C}_{\text {PUL }}=1 \mathrm{nF}$	-	12	-	$\mu \mathrm{s}$
		$\mathrm{R}_{\text {PUL }}=100 \mathrm{k} \Omega ; \mathrm{C}_{\text {PUL }}=1 \mathrm{nF}$	-	60	-	$\mu \mathrm{s}$
$\mathrm{R}_{\text {TACHO }}$	Open drain ON resistance	-	-	40	60	Ω
Overcurrent detection and protection						
ISOVER	Supply overcurrent protection threshold	$\mathrm{T}_{\mathrm{J}}=-25$ to $125{ }^{\circ} \mathrm{C}^{(1)}$	4.0	5.6	7.1	A
$\mathrm{R}_{\text {OPDR }}$	Open drain ON resistance	$\mathrm{I}_{\text {DIAG }}=4 \mathrm{~mA}$	-	40	60	Ω
I_{OH}	OCD high level leakage current	$\mathrm{V}_{\text {DIAG }}=5 \mathrm{~V}$	-	1	-	$\mu \mathrm{A}$
$\left.\mathrm{t}_{\text {OCD }} \mathrm{ON}\right)$	OCD turn-ON delay time ${ }^{(4)}$	$\mathrm{I}_{\text {DIAG }}=4 \mathrm{~mA} ; \mathrm{C}_{\text {DIAG }}<100 \mathrm{pF}$	-	200	-	ns
$\mathrm{t}_{\text {OCD (OFF) }}$	OCD turn-OFF delay time ${ }^{(4)}$	$\mathrm{I}_{\text {DIAG }}=4 \mathrm{~mA} ; \mathrm{C}_{\text {DIAG }}<100 \mathrm{pF}$	-	100	-	ns

1. Tested at $25^{\circ} \mathrm{C}$ in a restricted range and guaranteed by characterization.
2. See Figure 3: Switching characteristic definition.
3. Measured applying a voltage of 1 V to pin SENSE and a voltage drop from 2 V to 0 V to pin VREF.
4. See Figure 4: Overcurrent detection timing definition.

Figure 3. Switching characteristic definition

Figure 4. Overcurrent detection timing definition

5 Circuit description

5.1 Power stages and charge pump

The L6235 device integrates a 3-phase bridge, which consists of 6 power MOSFETs connected as shown in Figure 1: Block diagram on page 3. Each power MOS has an $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.3$ (typical value at $25^{\circ} \mathrm{C}$) with intrinsic fast freewheeling diode. Switching patterns are generated by the PWM current controller and the hall effect sensor decoding logic (see Section 6: PWM current control on page 13 and Section 8: Decoding logic on page 18). Cross conduction protection is implemented by using a deadtime ($\mathrm{t}_{\mathrm{DT}}=1 \mu \mathrm{~s}$ typical value) set by internal timing circuit between the turn off and turn on of two power MOSFETs in one leg of a bridge.

Pins VS_{A} and VS_{B} MUST be connected together to the supply voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$.
Using N -channel power MOS for the upper transistors in the bridge requires a gate drive voltage above the power supply voltage. The bootstrapped supply $\left(\mathrm{V}_{\mathrm{BOOT}}\right)$ is obtained through an internal oscillator and few external components to realize a charge pump circuit as shown in Figure 5. The oscillator output (pin VCP) is a square wave at 600 KHz (typically) with 10 V amplitude. Recommended values/part numbers for the charge pump circuit are shown in Table 6.

Table 6. Charge pump external component values

Component	Value
$\mathrm{C}_{\mathrm{BOOT}}$	220 nF
C_{P}	10 nF
R_{P}	100Ω
D_{1}	1 N 4148
D_{2}	1 N 4148

Figure 5. Charge pump circuit

5.2 Logic inputs

Pins FWD/REV, BRAKE, EN, $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} are TTL/CMOS compatible logic inputs. The internal structure is shown in Figure 6. Typical value for turn-ON and turn-OFF thresholds are respectively $\mathrm{V}_{\mathrm{th}(\mathrm{ON})}=1.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{th}(\mathrm{OFF})}=1.3 \mathrm{~V}$.
Pin EN (enable) may be used to implement overcurrent and thermal protection by connecting it to the open collector DIAG output. If the protection and an external disable function are both desired, the appropriate connection must be implemented. When the external signal is from an open collector output, the circuit in Figure 7 can be used. For external circuits that are push-pull outputs the circuit in Figure 8 could be used. The resistor R_{EN} should be chosen in the range from $2.2 \mathrm{~K} \Omega$ to $180 \mathrm{~K} \Omega$. Recommended values for R_{EN} and C_{EN} are respectively $100 \mathrm{~K} \Omega$ and 5.6 nF . More information for selecting the values can be found in Section 10: Non-dissipative overcurrent detection and protection on page 22.

Figure 6. Logic input internal structure

Figure 7. Pin EN open collector driving

Figure 8. Pin EN push-pull driving

6 PWM current control

The L6235 device includes a constant off time PWM current controller. The current control circuit senses the bridge current by sensing the voltage drop across an external sense resistor connected between the source of the three lower power MOS transistors and ground, as shown in Figure 9. As the current in the motor increases the voltage across the sense resistor increases proportionally. When the voltage drop across the sense resistor becomes greater than the voltage at the reference input pin VREF the sense comparator triggers the monostable switching the bridge off. The power MOS remains off for the time set by the monostable and the motor current recirculates around the upper half of the bridge in slow decay mode as described in Section 7: Slow decay mode on page 17. When the monostable times out, the bridge will again turn on. Since the internal deadtime, used to prevent cross conduction in the bridge, delays the turn on of the power MOS, the effective off time $t_{\text {OFF }}$ is the sum of the monostable time plus the deadtime.

Figure 10 shows the typical operating waveforms of the output current, the voltage drop across the sensing resistor, the pin RC voltage and the status of the bridge. More details regarding the synchronous rectification and the output stage configuration are included in Section 7.

Immediately after the power MOS turns on, a high peak current flows through the sense resistor due to the reverse recovery of the freewheeling diodes. The L6235 device provides a $1 \mu \mathrm{~s}$ blanking time $\mathrm{t}_{\text {BLANK }}$ that inhibits the comparator output so that the current spike cannot prematurely retrigger the monostable.

Figure 9. PWM current controller simplified schematic

Figure 10. Output current regulation waveforms

Figure 11 shows the magnitude of the off time $t_{\text {OFF }}$ versus $C_{\text {OFF }}$ and $\mathrm{R}_{\text {OFF }}$ values. It can be approximately calculated from the equations:

Equation 1

$$
\begin{gathered}
\mathrm{t}_{\text {RCFALL }}=0.6 \cdot \mathrm{R}_{\text {OFF }} \cdot \mathrm{C}_{\text {OFF }} \\
\mathrm{t}_{\text {OFF }}=\mathrm{t}_{\text {RCFALL }}+\mathrm{t}_{\mathrm{DT}}=0.6 \cdot \mathrm{R}_{\text {OFF }} \cdot \mathrm{C}_{\text {OFF }}+\mathrm{t}_{\mathrm{DT}}
\end{gathered}
$$

where $R_{\text {OFF }}$ and $C_{\text {OFF }}$ are the external component values and $t_{D T}$ is the internally generated deadtime with:

Equation 2

$$
\begin{aligned}
& 20 \mathrm{~K} \Omega \leq \mathrm{R}_{\mathrm{OFF}} \leq 100 \mathrm{~K} \Omega \\
& 0.47 \mathrm{nF} \leq \mathrm{C}_{\mathrm{OFF}} \leq 100 \mathrm{nF} \\
& \mathrm{t}_{\mathrm{DT}}=1 \mu \mathrm{~S} \text { (typical value) }
\end{aligned}
$$

Therefore:

Equation 3

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{OFF}(\mathrm{MIN})}=6.6 \mu \mathrm{~s} \\
& \mathrm{t}_{\mathrm{OFF}(\mathrm{MAX})}=6 \mathrm{~ms}
\end{aligned}
$$

These values allow a sufficient range of $\mathrm{t}_{\mathrm{OFF}}$ to implement the drive circuit for most motors.
The capacitor value chosen for C $_{\text {OFF }}$ also affects the rise time $t_{\text {RCRISE }}$ of the voltage at the pin RCOFF. The rise time $t_{\text {RCRISE }}$ will only be an issue if the capacitor is not completely charged before the next time the monostable is triggered. Therefore, the on time t_{ON}, which depends by motors and supply parameters, has to be bigger than $t_{\text {RCRISE }}$ for allowing a good current regulation by the PWM stage. Furthermore, the on time t_{ON} cannot be smaller than the minimum on time $\mathrm{t}_{\mathrm{ON}(\mathrm{MIN})}$.

Equation 4

$$
\left\{\begin{array}{c}
\mathrm{t}_{\mathrm{ON}}>\mathrm{t}_{\mathrm{ON}(\mathrm{MIN})}=1.5 \mu \mathrm{~s} \text { (typ. value) } \\
\mathrm{t}_{\mathrm{ON}}>\mathrm{t}_{\text {RCRISE }}-\mathrm{t}_{\mathrm{DT}} \\
\mathrm{t}_{\mathrm{RCRISE}}=600 \cdot \mathrm{C}_{\mathrm{OFF}}
\end{array}\right.
$$

Figure 12 shows the lower limit for the on time $t_{\text {ON }}$ for having a good PWM current regulation capacity. It has to be said that t_{ON} is always bigger than $\mathrm{t}_{\mathrm{ON}(\mathrm{MIN})}$ because the device imposes this condition, but it can be smaller than $t_{\text {RCRISE }}-t_{\text {DT }}$. In this last case the device continues to work but the off time $\mathrm{t}_{\mathrm{OFF}}$ is not more constant.

So, small $\mathrm{C}_{\text {OFF }}$ value gives more flexibility for the applications (allows smaller on time and, therefore, higher switching frequency), but, the smaller is the value for $\mathrm{C}_{\mathrm{OFF}}$, the more influential will be the noises on the circuit performance.

Figure 11. $t_{\text {OFF }}$ versus $C_{\text {OFF }}$ and $R_{\text {OFF }}$

Figure 12. Area where t_{ON} can vary maintaining the PWM regulation

7 Slow decay mode

Figure 13 shows the operation of the bridge in the slow decay mode during the off time. At any time only two legs of the 3-phase bridge are active, therefore only the two active legs of the bridge are shown in Figure 13 and the third leg will be off. At the start of the off time, the lower power MOS is switched off and the current recirculates around the upper half of the bridge. Since the voltage across the coil is low, the current decays slowly. After the deadtime the upper power MOS is operated in the synchronous rectification mode reducing the impedance of the freewheeling diode and the related conducting losses. When the monostable times out, upper MOS that was operating the synchronous mode turns off and the lower power MOS is turned on again after some delay set by the deadtime to prevent cross conduction.

Figure 13. Slow decay mode output stage configurations

8 Decoding logic

The decoding logic section is a combinatory logic that provides the appropriate driving of the 3-phase bridge outputs according to the signals coming from the three hall sensors that detect rotor position in a 3-phase BLDC motor. This novel combinatory logic discriminates between the actual sensor positions for sensors spaced at 60, 120, 240 and 300 electrical degrees. This decoding method allows the implementation of a universal IC without dedicating pins to select the sensor configuration.

There are eight possible input combinations for three sensor inputs. Six combinations are valid for rotor positions with 120 electrical degrees sensor phasing (see Figure 14, positions $1,2,3 a, 4,5$ and $6 a$) and six combinations are valid for rotor positions with 60 electrical degrees phasing (see Figure 15, positions 1, 2, 3b, 4, 5 and 6b). Four of them are in common (1, 2, 4 and 5) whereas there are two combinations used only in 120 electrical degrees sensor phasing (3a and 6a) and two combinations used only in 60 electrical degrees sensor phasing (3b and 6b).
The decoder can drive motors with different sensor configuration simply by following Table 7. For any input configuration ($\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3}) there is one output configuration $\left(\mathrm{OUT}_{1}, \mathrm{OUT}_{2}\right.$ and OUT_{3}). The output configuration 3 a is the same as 3 b and analogously output configuration 6 a is the same as 6 b .

The sequence of the hall codes for 300 electrical degrees phasing is the reverse of 60 and the sequence of the hall codes for 240 phasing is the reverse of 120 . So, by decoding the 60 and the 120 codes it is possible to drive the motor with all the four conventions by changing the direction set.

Table 7. 60 and 120 electrical degree decoding logic in forward direction

Hall 120	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3 a}$	$\mathbf{-}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6 a}$	$\mathbf{-}$
Hall 60	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{-}$	$\mathbf{3 b}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{-}$	$\mathbf{6 b}$
H_{1}	H	H	L	H	L	L	H	L
H_{2}	L	H	H	H	H	L	L	L
H_{3}	L	L	L	H	H	H	H	L
OUT_{1}	Vs	High Z	GND	GND	GND	High Z	Vs	Vs
OUT_{2}	High Z	Vs	Vs	Vs	High Z	GND	GND	GND
OUT $_{3}$	GND	GND	High Z	High Z	Vs	Vs	High Z	High Z
Phasing	$1->3$	$2->3$	$2->1$	$2->1$	$3->1$	$3->2$	$1->2$	$1->2$

Figure 14. 120° hall sensor sequence

Figure 15.60° hall sensor sequence

9 Tachometer

A tachometer function consists of a monostable, with constant off time ($t_{\text {PULSE }}$), whose input is one hall effect signal $\left(\mathrm{H}_{1}\right)$. It allows developing an easy speed control loop by using an external op amp, as shown in Figure 16. For component values refer to Section 11: Application information on page 25.

The monostable output drives an open drain output pin (TACHO). At each rising edge of the hall effect sensors H_{1}, the monostable is triggered and the MOSFET connected to the pin TACHO is turned off for a constant time $t_{\text {PULSE }}$ (see Figure 17). The off time $t_{\text {PULSE }}$ can be set using the external RC network ($R_{\text {PUL }}, C_{P U L}$) connected to the pin RCPULSE. Figure 18 gives the relation between $t_{\text {PULSE }}$ and $C_{\text {PUL }}, R_{\text {PUL }}$. We have approximately:

Equation 5

$$
\mathrm{t}_{\text {PULSE }}=0.6 \cdot \mathrm{R}_{\mathrm{PUL}} \cdot \mathrm{C}_{\text {PUL }}
$$

where $C_{P U L}$ should be chosen in the range 1 nF to 100 nF and $R_{P U L}$ in the range $20 \mathrm{~K} \Omega$ to $100 \mathrm{~K} \Omega$.

By connecting the tachometer pin to an external pull-up resistor, the output signal average value V_{M} is proportional to the frequency of the hall effect signal and, therefore, to the motor speed. This realizes a simple frequency-to-voltage converter. An op amp, configured as an integrator, filters the signal and compares it with a reference voltage $\mathrm{V}_{\text {REF }}$, which sets the speed of the motor.

Equation 6

$$
V_{M}=\frac{t_{\text {PULSE }}}{T} \cdot V_{D D}
$$

Figure 16. TACHO operation waveforms

Figure 17. Tachometer speed control loop

Figure 18. $t_{\text {PULSE }}$ versus $C_{\text {PUL }}$ and $R_{\text {PUL }}$

10 Non-dissipative overcurrent detection and protection

The L6235 device integrates an "Overcurrent Detection" circuit (OCD) for full protection. This circuit provides output to output and output to ground short-circuit protection as well. With this internal overcurrent detection, the external current sense resistor normally used and its associated power dissipation are eliminated. Figure 19 shows a simplified schematic for the overcurrent detection circuit.

To implement the overcurrent detection, a sensing element that delivers a small but precise fraction of the output current is implemented with each high-side power MOS. Since this current is a small fraction of the output current there is very little additional power dissipation. This current is compared with an internal reference current $\mathrm{I}_{\text {REF }}$. When the output current reaches the detection threshold (typically $I_{\text {SOVER }}=5.6 \mathrm{~A}$) the OCD comparator signals a fault condition. When a fault condition is detected, an internal open drain MOS with a pull down capability of 4 mA connected to pin DIAG is turned on.
The pin DIAG can be used to signal the fault condition to a $\mu \mathrm{C}$ or to shut down the 3-phase bridge simply by connecting it to pin EN and adding an external R-C (see $R_{E N}, C_{E N}$).

Figure 19. Overcurrent protection simplified schematic

Figure 20 shows the overcurrent detection operation. The disable time $t_{\text {DISABLE }}$ before recovering normal operation can be easily programmed by means of the accurate thresholds of the logic inputs. It is affected whether by $C_{E N}$ and $R_{E N}$ values and its magnitude is reported in Figure 21. The delay time $t_{\text {DELAY }}$ before turning off the bridge when an overcurrent has been detected depends only by C_{EN} value. Its magnitude is reported in Figure 22.
C_{EN} is also used for providing immunity to pin EN against fast transient noises. Therefore the value of $\mathrm{C}_{E N}$ should be chosen as big as possible according to the maximum tolerable delay time and the $R_{\text {EN }}$ value should be chosen according to the desired disable time.

The resistor $R_{E N}$ should be chosen in the range from $2.2 \mathrm{~K} \Omega$ to $180 \mathrm{~K} \Omega$. Recommended values for $R_{E N}$ and $C_{E N}$ are respectively $100 \mathrm{~K} \Omega$ and 5.6 nF that allow obtaining $200 \mu \mathrm{~s}$ disable time.

Figure 20. Overcurrent protection waveforms

Figure 21. $t_{\text {DISABLE }}$ versus $C_{E N}$ and $R_{E N}$

Figure 22. $t_{\text {DELAY }}$ versus $C_{E N}$

11 Application information

A typical application using the L6235 device is shown in Figure 23. Typical component values for the application are shown in Table 8. A high quality ceramic capacitor $\left(\mathrm{C}_{2}\right)$ in the range of 100 nF to 200 nF should be placed between the power pins VS_{A} and VS_{B} and ground near the L 6235 device to improve the high frequency filtering on the power supply and reduce high frequency transients generated by the switching. The capacitor (C_{EN}) connected from the EN input to ground sets the shutdown time when an overcurrent is detected (see Section 10: Non-dissipative overcurrent detection and protection). The two current sensing inputs (SENSE A_{A} and SENSE $_{B}$) should be connected to the sensing resistor $\mathrm{R}_{\text {SENSE }}$ with a trace length as short as possible in the layout. The sense resistor should be non-inductive resistor to minimize the di/dt transients across the resistor. To increase noise immunity, unused logic pins are best connected to 5 V (high logic level) or GND (low logic level) (see Table 4: Pin description on page 6). It is recommended to keep power ground and signal ground separated on the PCB.

Table 8. Component values for typical application

Component	Value
C_{1}	100 nF
C_{2}	100 nF
C_{3}	220 nF
$\mathrm{C}_{\text {BOOT }}$	220 nF
$\mathrm{C}_{\text {OFF }}$	1 nF
$\mathrm{C}_{\text {PUL }}$	10 nF
$\mathrm{C}_{\text {REF1 }}$	33 nF
$\mathrm{C}_{\text {REF2 }}$	100 nF
$\mathrm{C}_{\text {EN }}$	5.6 nF
C_{P}	10 nF
D_{1}	1 N 4148
D_{2}	1 N 4148
R_{1}	$5.6 \mathrm{~K} \Omega$
R_{2}	$1.8 \mathrm{~K} \Omega$
R_{3}	$4.7 \mathrm{~K} \Omega$
R_{4}	$1 \mathrm{M} \Omega$
R_{DD}	$1 \mathrm{~K} \Omega$
$\mathrm{R}_{\text {EN }}$	$100 \mathrm{~K} \Omega$
R_{P}	100Ω
$\mathrm{R}_{\text {SENSE }}$	0.3Ω
$\mathrm{R}_{\text {OFF }}$	$33 \mathrm{~K} \Omega$
$\mathrm{R}_{\text {PUL }}$	$47 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{H} 1}, \mathrm{R}_{\mathrm{H} 2}, \mathrm{R}_{\mathrm{H} 3}$	$10 \mathrm{~K} \Omega$

Figure 23. Typical application

11.1 Output current capability and IC power dissipation

In Figure 24 is shown the approximate relation between the output current and the IC power dissipation using PWM current control.

For a given output current the power dissipated by the IC can be easily evaluated, in order to establish which package should be used and how large must be the on-board copper dissipating area to guarantee a safe operating junction temperature ($125^{\circ} \mathrm{C}$ maximum).

Figure 24. IC power dissipation versus output power

11.2 Thermal management

In most applications the power dissipation in the IC is the main factor that sets the maximum current that can be delivered by the device in a safe operating condition. Selecting the appropriate package and heatsinking configuration for the application is required to maintain the IC within the allowed operating temperature range for the application. Figure 25 and 26 show the junction to ambient thermal resistance values for the PowerSO36 and SO24 packages.

For instance, using a PowerSO package with a copper slug soldered on a 1.5 mm copper thickness FR4 board with a $6 \mathrm{~cm}^{2}$ dissipating footprint (copper thickness of $35 \mu \mathrm{~m}$), the $\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{amb})}$ is about $35^{\circ} \mathrm{C} / \mathrm{W}$. Figure 27 shows mounting methods for this package. Using a multilayer board with vias to a ground plane, thermal impedance can be reduced down to $15^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 25. PowerSO36 junction ambient thermal resistance versus on-board copper area

Figure 26. SO24 junction ambient thermal resistance versus on-board copper area

Figure 27. Mounting the PowerSO package

Figure 28. Typical quiescent current vs. supply voltage

Figure 29. Typical high-side $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. supply voltage

Figure 30. Normalized typical quiescent current vs. switching frequency

Figure 31. Normalized $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{vs}$. junction temperature (typical value)
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} /\left(\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} @ 25^{\circ} \mathrm{C}\right)$

Figure 32. Typical low-side $R_{D S(O N)}$ vs. supply voltage

Figure 33. Typical drain-source diode forward ON characteristic

12 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

12.1 PowerSO36 package information

Figure 34. PowerSO36 package outline

Table 9. PowerSO36 package mechanical data

Symbol	Dimensions					
	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	-	-	3.60	-	-	0.141
a1	0.10	-	0.30	0.004	-	0.012
a2	-	-	3.30	-	-	0.130
a3	0	-	0.10	0	-	0.004
b	0.22	-	0.38	0.008	-	0.015
c	0.23	-	0.32	0.009	-	0.012
$D^{(1)}$	15.80	-	16.00	0.622	-	0.630
D1	9.40	-	9.80	0.370	-	0.385
E	13.90	-	14.50	0.547	-	0.570
e	-	0.65	-	-	0.0256	-
e3	-	11.05	-	-	0.435	-
$E 1^{(1)}$	10.90	-	11.10	0.429	-	0.437
E2	-	-	2.90	-	-	0.114
E3	5.80	-	6.20	0.228	-	0.244
E4	2.90	-	3.20	0.114	-	0.126
G	0	-	0.10	0	-	0.004
H	15.50	-	15.90	0.610	-	0.626
h	-	-	1.10	-	-	0.043
L	0.80	-	1.10	0.031	-	0.043
N	10° (max.)					
S	8° (max.)					

1. "D" and "E1" do not include mold flash or protrusions.

- Mold flash or protrusions shall not exceed 0.15 mm (0.006 inch).
- Critical dimensions are "a3", "E" and "G".

12.2 SO24 package information

Figure 35. SO24 package outline

Table 10. SO24 package mechanical data

Symbol	Dimensions (mm)			Dimensions (inch)							
	Min.	Typ.	Max.	Min.	Typ.	Max.					
A	2.35	-	2.65	0.093	-	0.104					
A1	0.10	-	0.30	0.004	-	0.012					
B	0.33	-	0.51	0.013	-	0.020					
C	0.23	-	0.32	0.009	-	0.013					
D $^{(1)}$	15.20	-	15.60	0.598	-	0.614					
E	7.40	-	7.60	0.291	-	0.299					
e	-	1.27	-	-	0.050	-					
H	10.0	-	10.65	0.394	-	0.419					
h	0.25	-	0.75	0.010	-	0.030					
L	0.40	-	1.27	0.016	-	0.050					
k	$0^{\circ}(m i n), ~$								$8^{\circ}(m a x)$.		
ddd	-	-	0.10	-	-	0.004					

1. "D" dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side.

13 Revision history

Table 11. Document revision history

Date	Revision	Changes
03-Sep-2003	1	Initial release.
		$\begin{array}{l}\text { Updated Section: Description on page 1 (removed "MultiPower-" from "MultiPower- } \\ \text { BCD technology"). Added Contents on page 2. } \\ \text { Updated Section 1 on page 3 (added section title, numbered and moved Figure 1: } \\ \text { Block diagram from page 1 to page 3). } \\ \text { Added title to Section 2 on page 4, added numbers and titles from Table 1 to Table 3. } \\ \text { Added title to Section 3 on page 6, added number and title to Figure 2, renumbered } \\ \text { note 1 below Figure 2, added title to Table 4. } \\ \text { Added title to Section 4 on page 8, added title and number to Table 5, renumbered } \\ \text { notes 1 to 4 below Table 5. Renumbered Figure 3 and Figure 4. }\end{array}$
Added section numbers to Section 5 on page 11, Section 5.1 and Section 5.2.		
Removed "and μ C" from first sentence in Section 5.2. Renumbered Table 6, added		
header to Table 6. Renumbered Figure 5 to Figure 8.		
Added section numbers to Section 6 on page 13. Renumbered Figure 9 to Figure 12.		
Numbered Equation 1 to Equation 4.		

Added section number to Section 8 on page 18. Renumbered Table 7. Renumbered

Figure 14 and Figure 15.\end{array}\right\}\)| Added section number to Section 9 on page 20. Renumbered Figure 16 to Figure 18. |
| :--- |
| Numbered Equation 5 and Equation 6. |
| Added section number to Section 10 on page 22. Renumbered Figure 19 to Figure 22. |
| Added section numbers to Section 11 on page 25, Section 11.1 and Section 11.2. |
| Renumbered Table 8, added header to Table 8. Renumbered Figure 23 to Figure 34. |
| Updated Section on page 34 (added main title and ECOPACK text. Added titles from |
| Table 9 to Table 11 and from Figure 35 to Figure 37, reversed order of named tables |
| and figures. Removed 3D figures of packages, replaced 0.200 by 0.020 inch of max. B |
| value in Table 11). |
| Added cross-references throughout document. |
| Added Section 13 and Table 12. |
| Minor modifications throughout document. |

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801

LB11851FA-BH NCV70627DQ001R2G

