High voltage high/low-side driver

Datasheet - production data

Features

- High voltage rail up to 600 V
- $\mathrm{dV} / \mathrm{dt}$ immunity $\pm 50 \mathrm{~V} / \mathrm{nsec}$ in full temperature range
- Driver current capability: 290 mA source, 430 mA sink
- Switching times 75/35 nsec rise/fall with 1 nF load
- $3.3 \mathrm{~V}, 5 \mathrm{~V}$ TTL/CMOS inputs with hysteresis
- Integrated bootstrap diode
- Operational amplifier for advanced current sensing
- Comparator for fast fault protection
- Smart shutdown function
- Adjustable deadtime
- Interlocking function
- Compact and simplified layout
- Bill of material reduction

Applications

- Home appliances
- Motor drivers
- DC, AC, PMDC and PMAC motors
- FOC and sensorless BEMF detection systems
- Industrial applications and drives
- Induction heating
- HVAC
- Factory automation
- Power supply systems

Description

The L6390 is a full featured high voltage device manufactured with the BCD TM "offline" technology. It is a single-chip half-bridge gate driver for N -channel power MOSFETs or IGBTs. The high-side (floating) section is able to work with voltage rail up to 600 V .

Both device outputs can sink and source 430 mA and 290 mA respectively. Prevention from cross conduction is ensured by interlocking and programmable deadtime functions.
The device has dedicated input pins for each output and a shutdown pin. The logic inputs are CMOS/TTL compatible down to 3.3 V for easy interfacing with control devices. Matched delays between low-side and high-side sections guarantee no cycle distortion and allow high frequency operation.

The L6390 embeds an operational amplifier suitable for advanced current sensing in applications such as field oriented motor control or for sensorless BEMF detection. A comparator featuring advanced smartSD function is also integrated in the device, ensuring fast and effective protection against fault events like overcurrent, overtemperature, etc.
The L6390 device features also UVLO protection on both the lower and upper driving sections, preventing the power switches from operating in low efficiency or dangerous conditions.

The integrated bootstrap diode as well as all of the integrated features of this IC make the application PCB design easier, more compact and simple thus reducing the overall bill of material.

The device is available in an SO-16 tube and tape and reel packaging options.

Contents

1 Block diagram 3
2 Pin connection 4
3 Electrical data 5
3.1 Absolute maximum ratings 5
3.2 Thermal data 5
3.3 Recommended operating conditions 6
4 Electrical characteristics 7
4.1 AC operation 7
4.2 DC operation 9
5 Timing and waveforms definitions 12
6 Input logic 14
7 Smart shutdown function 15
8 Typical application diagram 18
$9 \quad$ Bootstrap driver 19
$\mathrm{C}_{\text {Bоот }}$ selection and charging 19
10 Package information 21
10.1 SO-16 package information 21
11 Order codes 23
12 Revision history 24

1 Block diagram

Figure 1. Block diagram

2 Pin connection

Figure 2. Pin connection (top view)

Table 1. Pin description

Pin no.	Pin name	Type	Function
1	$\overline{\text { LIN }}$	I	Low-side driver logic input (active low)
2	$\overline{\text { SD/OD }}{ }^{(1)}$	I/O	Shutdown logic input (active low)/open drain (comparator output)
3	HIN	I	High-side driver logic input (active high)
4	VCC	P	Lower section supply voltage
5	DT	I	Deadtime setting
6	OP-	I	Op amp inverting input
7	OPOUT	O	Op amp output
8	GND	P	Ground
9	OP+	I	Op amp non-inverting input
10	CP+	I	Comparator input
11	LVG ${ }^{(1)}$	O	Low-side driver output
12,13	NC		Not connected
14	OUT	P	High-side (floating) common voltage
15	HVG ${ }^{(1)}$	O	High-side driver output
16	BOOT	P	Bootstrap supply voltage

1. The circuit provides less than 1 V on the LVG and HVG pins (at $\mathrm{I}_{\text {sink }}=10 \mathrm{~mA}$), with $\mathrm{V}_{\mathrm{Cc}}>3 \mathrm{~V}$. This allows the omission of the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low; the gate driver assures low impedance also in SD condition.

3 Electrical data

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value		Unit
		Min.	Max.	
V_{CC}	Supply voltage	-0.3	21	V
$\mathrm{~V}_{\text {OUT }}$	Output voltage	$\mathrm{V}_{\mathrm{BOOT}}-21$	$\mathrm{~V}_{\mathrm{BOOT}}+0.3$	V
$\mathrm{~V}_{\mathrm{BOOT}}$	Bootstrap voltage	-0.3	620	V
$\mathrm{~V}_{\text {hvg }}$	High-side gate output voltage	$\mathrm{V}_{\mathrm{OUT}}-0.3$	$\mathrm{~V}_{\mathrm{BOOT}}+0.3$	V
$\mathrm{~V}_{\text {lvg }}$	Low-side gate output voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\mathrm{~V}_{\mathrm{OP}+}$	Op amp non-inverting input	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\mathrm{~V}_{\mathrm{OP}-}$	Op amp inverting input	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\mathrm{~V}_{\mathrm{CP}+}$	Comparator input voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\mathrm{~V}_{\mathrm{i}}$	Logic input voltage	-0.3	15	V
$\mathrm{~V}_{\text {od }}$	Open drain voltage	-0.3	15	V
$\mathrm{~d} \mathrm{~V}_{\mathrm{OUT}} / \mathrm{dt}$	Allowed output slew rate	-	50	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{P}_{\text {tot }}$	Total power dissipation $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	-	800	mW
$\mathrm{~T}_{\mathrm{J}}$	Junction temperature	-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-50	150	${ }^{\circ} \mathrm{C}$
ESD	Human body model			kV

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	SO-16	Unit
$\mathrm{R}_{\text {th(JA) }}$	Thermal resistance junction to ambient	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Pin	Parameter	Test condition	Min.	Max.	Unit
V_{CC}	4	Supply voltage	-	12.5	20	V
$\mathrm{~V}_{\mathrm{BO}}{ }^{(1)}$	$16-14$	Floating supply voltage	-	12.4	20	V
$\mathrm{~V}_{\mathrm{OUT}}$	14	DC output voltage	-	$-9^{(2)}$	580	V
f_{Sw}	-	Switching frequency	HVG, LVG load $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	-	800	kHz
T_{J}	-	Junction temperature	-	-40	125	${ }^{\circ} \mathrm{C}$

1. $\mathrm{V}_{\mathrm{BO}}=\mathrm{V}_{\text {BOOT }}-\mathrm{V}_{\text {OUT }}$.
2. LVG off. $\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V}$. Logic is operational if $\mathrm{V}_{\mathrm{BOOT}}>5 \mathrm{~V}$. Refer to the AN 2738 for more details.

4 Electrical characteristics

4.1 AC operation

Table 5. AC operation electrical characteristics ($\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=+\mathbf{+ 2 5 ^ { \circ }}{ }^{\circ} \mathrm{C}$)

Symbol	Pin	Parameter	Test condition	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {on }}$	$\begin{aligned} & 1 \text { vs. } 11 \\ & 3 \text { vs. } 15 \end{aligned}$	High/low-side driver turn-on propagation delay	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {BOOT }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \\ & \mathrm{~V}_{\mathrm{i}}=0 \text { to } 3.3 \mathrm{~V} \end{aligned}$ See Figure 4 on page 12	50	125	200	ns
$\mathrm{t}_{\text {off }}$		High/low-side driver turn-off propagation delay		50	125	200	ns
$\mathrm{t}_{\text {sd }}$	2 vs. 11, 15	Shutdown to high/low-side driver propagation delay		50	125	200	ns
$\mathrm{t}_{\text {isd }}$	-	Comparator triggering to high/low-side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin $\mathrm{CP}+$.	50	200	250	ns
MT	-	Delay matching, HS and LS turn-on/off	-	-	-	30	ns
DT	5	Deadtime setting range ${ }^{(1)}$	$\mathrm{R}_{\mathrm{DT}}=0, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	0.1	0.18	0.25	$\mu \mathrm{s}$
			$\begin{aligned} & \mathrm{R}_{\mathrm{DT}}=37 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \\ & \mathrm{C}_{\mathrm{DT}}=100 \mathrm{nF} \end{aligned}$	0.48	0.6	0.72	$\mu \mathrm{S}$
			$\begin{aligned} & \mathrm{R}_{\mathrm{DT}}=136 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \\ & \mathrm{C}_{\mathrm{DT}}=100 \mathrm{nF} \end{aligned}$	1.35	1.6	1.85	$\mu \mathrm{S}$
			$\begin{aligned} & \mathrm{R}_{\mathrm{DT}}=260 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \\ & \mathrm{C}_{\mathrm{DT}}=100 \mathrm{nF} \end{aligned}$	2.6	3.0	3.4	$\mu \mathrm{S}$
MDT	-	Matching deadtime ${ }^{(2)}$	$\mathrm{R}_{\mathrm{DT}}=0, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	-	-	80	ns
			$\begin{aligned} & \mathrm{R}_{\mathrm{DT}}=37 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \\ & \mathrm{C}_{\mathrm{DT}}=100 \mathrm{nF} \end{aligned}$	-	-	120	ns
			$\begin{aligned} & \mathrm{R}_{\mathrm{DT}}=136 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \\ & \mathrm{C}_{\mathrm{DT}}=100 \mathrm{nF} \end{aligned}$	-	-	250	ns
			$\begin{aligned} & \mathrm{R}_{\mathrm{DT}}=260 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \\ & \mathrm{C}_{\mathrm{DT}}=100 \mathrm{nF} \end{aligned}$	-	-	400	ns
t_{r}	11, 15	Rise time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	-	75	120	ns
t_{f}		Fall time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	-	35	70	ns

1. See Figure 3.
2. $\mathrm{MDT}=\left|\mathrm{DT}_{\mathrm{LH}}-\mathrm{DT}_{\mathrm{HL}}\right|$ see Figure 6 on page 13.

Figure 3. Typical deadtime vs. DT resistor value

4.2 DC operation

Table 6. DC operation electrical characteristics ($\mathrm{V}_{\mathrm{CC}}=\mathbf{1 5} \mathrm{V} ; \mathrm{T}_{\mathrm{J}}=+\mathbf{2 5}^{\circ} \mathrm{C}$)

Symbol	Pin	Parameter	Test condition	Min.	Typ.	Max.	Unit
Low supply voltage section							
$\mathrm{V}_{\text {CC_hys }}$	4	$\mathrm{V}_{\text {CC }}$ UV hysteresis	-	1200	1500	1800	mV
$\mathrm{V}_{\text {CC_thon }}$		$\mathrm{V}_{\text {CC }}$ UV turn-ON threshold	-	11.5	12	12.5	V
$\mathrm{V}_{\text {CC_thOFF }}$		$\mathrm{V}_{\text {CC }}$ UV turn-OFF threshold	-	10	10.5	11	V
$\mathrm{I}_{\text {QCCU }}$		Undervoltage quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{SD}=5 \mathrm{~V} ; \overline{\mathrm{LIN}}=5 \mathrm{~V} ; \\ & \mathrm{HIN}=\mathrm{GND} ; \\ & \mathrm{R}_{\mathrm{DT}}=0 \Omega ; \\ & \mathrm{CP}+=\mathrm{OP}+=\mathrm{GND} ; \\ & \mathrm{OP}-=5 \mathrm{~V} \end{aligned}$	90	120	150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {QcC }}$		Quiescent current	$\begin{aligned} & \mathrm{V} \mathrm{CC}=15 \mathrm{~V} \\ & \overline{\mathrm{SD}}=5 \mathrm{~V} ; \overline{\mathrm{LIN}}=5 \mathrm{~V} ; \\ & \mathrm{HIN}=\mathrm{GND} ; \\ & \mathrm{R}_{\mathrm{DT}}=0 \Omega ; \\ & \mathrm{CP}+=\mathrm{OP}+=\mathrm{GND} ; \\ & \mathrm{OP}-=5 \mathrm{~V} \end{aligned}$	300	720	1000	$\mu \mathrm{A}$
$V_{\text {ref }}$		Internal reference voltage	-	500	540	580	mV

Bootstrapped supply voltage section ${ }^{(1)}$

$\mathrm{V}_{\text {BO_hys }}$	16	$V_{B O}$ UV hysteresis	-	1200	1500	1800	mV
$\mathrm{V}_{\text {BO_thON }}$		$\mathrm{V}_{\text {BO }}$ UV turn-ON threshold	-	11.1	11.5	12.1	V
$\mathrm{V}_{\text {BO_thOFF }}$		$\mathrm{V}_{\text {BO }}$ UV turn-OFF threshold	-	9.8	10	10.6	V
$\mathrm{I}_{\text {QBOU }}$		Undervoltage V_{BO} quiescent current	$\begin{aligned} & \mathrm{V} \mathrm{BO}=9 \mathrm{~V} \\ & \hline \mathrm{SD}=5 \mathrm{~V} ; \overline{\mathrm{LIN}} \text { and } \\ & \mathrm{HIN}=5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{DT}}=0 \Omega ; \\ & \mathrm{CP}+=\mathrm{OP}+=\mathrm{GND} ; \\ & \mathrm{OP}-=5 \mathrm{~V} \end{aligned}$	30	70	110	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{QBO}}$		V_{BO} quiescent current	$\begin{aligned} & \mathrm{V}_{\mathrm{BO}}=15 \mathrm{~V} \\ & \hline \mathrm{SD}=5 \mathrm{~V} ; \overline{\mathrm{LIN}} \text { and } \\ & \mathrm{HIN}=5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{DT}}=0 \Omega \\ & \mathrm{CP}+=\mathrm{OP}+=\mathrm{GND} ; \\ & \mathrm{OP}-=5 \mathrm{~V} \end{aligned}$	30	150	240	$\mu \mathrm{A}$
ILK	-	High voltage leakage current	$\mathrm{V}_{\text {hvg }}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {BOOT }}=600 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	-	Bootstrap driver onresistance ${ }^{(2)}$	LVG ON	-	120	-	Ω

Table 6. DC operation electrical characteristics $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$ (continued)

Symbol	Pin	Parameter	Test condition	Min.	Typ.	Max.	Unit
Driving buffers section							
$\mathrm{I}_{\text {so }}$	11, 15	High/low-side source shortcircuit current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ih }}\left(\mathrm{t}_{\mathrm{p}}<10 \mu \mathrm{~s}\right)$	200	290	-	mA
l_{si}		High/low-side sink shortcircuit current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{il}}\left(\mathrm{t}_{\mathrm{p}}<10 \mu \mathrm{~s}\right)$	250	430	-	mA
Logic inputs							
$\mathrm{V}_{\text {il }}$	1, 2, 3	Low level logic threshold voltage	-	0.8	-	1.1	V
$\mathrm{V}_{\text {ih }}$		High level logic threshold voltage	-	1.9	-	2.25	V
$\mathrm{V}_{\text {il_s }}$	1, 3	Single input voltage	$\overline{\mathrm{LIN}}$ and HIN connected together and floating	-	-	0.8	V
$\mathrm{I}_{\mathrm{HINh}}$	3	HIN logic "1" input bias current	$\mathrm{HIN}=15 \mathrm{~V}$	110	175	260	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{HINI}}$		HIN logic " 0 " input bias current	$\mathrm{HIN}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LINI }}$	1	$\overline{\text { LIN }}$ logic "0" input bias current	$\overline{\mathrm{LIN}}=0 \mathrm{~V}$	3	6	20	$\mu \mathrm{A}$
ILINh		$\overline{\text { LIN }}$ logic "1" input bias current	$\overline{\mathrm{LIN}}=15 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
$I_{\text {SDh }}$	2	$\overline{S D}$ logic "1" input bias current	$\overline{\mathrm{SD}}=15 \mathrm{~V}$	10	40	100	$\mu \mathrm{A}$
$I_{\text {SDI }}$		$\overline{S D}$ logic "0" input bias current	$\overline{\mathrm{SD}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
R ${ }_{\text {PD_SD }}$	2	$\overline{\mathrm{SD}}$ input pull-down resistor	$\overline{\mathrm{SD}}=15 \mathrm{~V}$	150	375	1500	k Ω

1. $V_{\text {BO }}=V_{\text {BOOT }}-V_{\text {OUT }}$.
2. $R_{D S O N}$ is tested in the following way: $R_{D S O N}=\left[\left(V_{C C}-V_{\text {BOOT1 }}\right)-\left(V_{C C}-V_{B O O T 2}\right)\right] /\left[I_{1}\left(V_{C C}, V_{B O O T 1}\right)-I_{2}\left(V_{C C}, V_{\text {BOOT2 }}\right)\right]$ where I_{1} is the pin 16 current when $V_{\text {BOOT }}=V_{B O O T 1}, I_{2}$ when $V_{\text {BOOT }}=V_{\text {BOOT2 }}$.

Table 7. Op amp characteristics ${ }^{(1)}\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)$

Symbol	Pin	Parameter	Test condition	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	6, 9	Input offset voltage	$\mathrm{V}_{\text {ic }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=7.5 \mathrm{~V}$	-	-	6	mV
$\mathrm{I}_{\text {io }}$		Input offset current	$\mathrm{V}_{\mathrm{ic}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=7.5 \mathrm{~V}$	-	4	40	nA
$\mathrm{l}_{\text {ib }}$		Input bias current ${ }^{(2)}$		-	100	200	nA
$V_{i c m}$		Input common mode voltage range	-	0	-	$\mathrm{V}_{\mathrm{Cc}}-4$	V
$\mathrm{V}_{\text {OPOUT }}$	7	Output voltage swing	OPOUT = OP-; no load	0.07	-	$\mathrm{V}_{\mathrm{CC}}-4$	V
I_{0}		Output short-circuit current	Source, $\mathrm{V}_{\text {id }}=+1 ; \mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}$	16	30	-	mA
			Sink, $V_{\text {id }}=-1 ; V_{0}=V_{C C}$	50	80	-	mA
SR	-	Slew rate	$\mathrm{V}_{\mathrm{i}}=1 \div 4 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ unity gain	2.5	3.8	-	V/ $/ \mathrm{s}$
GBWP	-	Gain bandwidth product	$\mathrm{V}_{\mathrm{o}}=7.5 \mathrm{~V}$	8	12	-	MHz
A_{vd}	-	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	70	85	-	dB
SVR	-	Supply voltage rejection ratio	vs. V_{CC}	60	75	-	dB
CMRR	-	Common mode rejection ratio	-	55	70	-	dB

1. The operational amplifier is disabled when V_{CC} is in UVLO condition.
2. Input bias current flows out the IC leads.

Table 8. Sense comparator characteristics ${ }^{(1)}\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=\mathbf{+ 2 5}{ }^{\circ} \mathrm{C}\right)$

Symbol	Pin	Parameter	Test condition	Min.	Typ.	Max.	Unit
I_{ib}	10	Input bias current	$\mathrm{V}_{\mathrm{CP}+}=1 \mathrm{~V}$	-	-	1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	2	Open drain low level output voltage	$\mathrm{I}_{\mathrm{OD}}=-3 \mathrm{~mA}$	-	-	0.5	V
$\mathrm{R}_{\mathrm{ON} _\mathrm{OD}}$	2	Open drain ON resistor	-	-	125	167	Ω
$\mathrm{t}_{\mathrm{d} _ \text {comp }}$	-	Comparator delay	$\overline{\mathrm{SD}} / \mathrm{OD}$ pulled to 5 V through $100 \mathrm{k} \Omega$ resistor	-	90	130	ns
SR	2	Slew rate	$\mathrm{C}_{\mathrm{L}}=180 \mathrm{pF} ; \mathrm{R}_{\mathrm{pu}}=5 \mathrm{k} \Omega$	-	60	-	$\mathrm{V} / \mathrm{\mu s}$

1. The comparator is disabled when V_{CC} is in UVLO condition.

5 Timing and waveforms definitions

Figure 4. Propagation delay timing definition

Figure 5. Dead time and interlocking timing definitions

Figure 6. Deadtime and interlocking waveforms definition

(*) HIN and LIN can be connected togheter and driven by just one control signal.

6 Input logic

Input logic is provided with an interlocking circuitry which avoids cross-conduction in case of wrong signals on LIN and HIN tries to turn-on both LVG and HVG outputs at the same times. In addition, to prevent cross conduction of the external MOSFETs, after each output is turned off, the other output cannot be turned on before a certain amount of time (DT) (see Figure 5: Dead time and interlocking timing definitions).

Table 9. Truth table

Input			Output	
$\overline{\text { SD }}$	$\overline{\text { LIN }}$	HIN	LVG	HVG
L	$X^{(1)}$	$X^{(1)}$	L	L
H	H	L	L	L
H	L	H	L	L
H	L	L	H	L
H	H	H	L	H

1. X : don't care.

7 Smart shutdown function

The L6390 device integrates a comparator committed to the fault sensing function. The comparator has an internal voltage reference $\mathrm{V}_{\text {ref }}$ connected to the inverting input, while the non-inverting input is available on the pin 10 . The comparator input can be connected to an external shunt resistor in order to implement a simple overcurrent detection function. The output signal of the comparator is fed to an integrated MOSFET with the open drain output available on the pin 2 , shared with the $\overline{\mathrm{SD}}$ input. When the comparator triggers, the device is set in shutdown state and both its outputs are set to low level leaving the half-bridge in tristate.

Figure 7. Smart shutdown timing waveforms

In common overcurrent protection architectures the comparator output is usually connected to the $\overline{\mathrm{SD}}$ input and an RC network is connected to this $\overline{\mathrm{SD}} / \mathrm{OD}$ line in order to provide a monostable circuit, which implements a protection time that follows the fault condition. Differently from the common fault detection systems, the L6390 smart shutdown architecture allows immediate turn-off of the outputs of the gate driver in the case of fault, by minimizing the propagation delay between the fault detection event and the actual output switch-off. In fact, the time delay between the fault detection and the output turn-off is no longer dependent on the value of the external RC network connected to the $\overline{S D} / O D$ pin. In the smart shutdown circuitry the fault signal has a preferential path which directly switches off the outputs after the comparator triggering. At the same time the internal logic turns on the open drain output and holds it on until the $\overline{\mathrm{SD}}$ voltage goes below the $\overline{\mathrm{SD}}$ logic input lower threshold. When such threshold is reached, the open drain output is turned off, allowing the external pull-up to recharge the capacitor. The driver outputs restart following the input pins as soon as the voltage at the $\overline{\mathrm{SD}} / \mathrm{OD}$ pin reaches the higher threshold of the $\overline{\mathrm{SD}}$ logic input. The smart shutdown system provides the possibility to increase the time constant of the external RC network (that determines the disable time after the fault event) up to very large values without increasing the delay time of the protection.
Any external signal provided to the $\overline{\mathrm{SD}}$ pin is not latched and can be used as control signal in order to perform, for instance, PWM chopping through this pin. In fact when a PWM signal is applied to the $\overline{\mathrm{SD}}$ input and the logic inputs of the gate driver are stable, the outputs switch from the low level to the state defined by the logic inputs and vice versa.

In some applications it may be useful to latch the driver in the shutdown condition for an arbitrary time, until the controller decides to reset it to normal operation. This may, for example, be achieved with a circuit similar to the one shown in Figure 8. When the open drain starts pulling down the $\overline{\mathrm{SD}} / \mathrm{OD}$ pin, the external latch turns on and keeps the pin to GND, preventing it from being pulled up again once the SD logic input lower threshold is reached and the internal open drain turns off. One pin of the controller is used to release the external latch, and one to externally force a shutdown condition and also to read the status of the $\overline{\mathrm{SD}} / \mathrm{OD}$ pin.

Figure 8. Protection latching example circuit

In applications using only one L6390 for the protection of several different legs (such as a single-shunt inverter, for example) it may be useful to implement the resistor divider shown in Figure 9. This simple network allows the pushing of the $\overline{\mathrm{SD}}$ pins of the other devices to a voltage lower than $\mathrm{L} 6390 \mathrm{~V}_{\mathrm{i}}$, so that each device can reach its low logic level regardless of part-to-part variations of the thresholds.

Figure 9. $\overline{\mathrm{SD}}$ level shifting example circuit

8 Typical application diagram

Figure 10. Application diagram

$9 \quad$ Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (Figure 11.a). In the L6390 device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in Figure 11.b. An internal charge pump (Figure 11.b) provides the DMOS driving voltage.

$\mathrm{C}_{\text {воот }}$ selection and charging

To choose the proper $\mathrm{C}_{\text {BOOT }}$ value the external MOS can be seen as an equivalent capacitor. This capacitor $\mathrm{C}_{E X T}$ is related to the MOS total gate charge:

Equation 1

$$
C_{E X T}=\frac{Q_{\text {gate }}}{V_{\text {gate }}}
$$

The ratio between the capacitors $\mathrm{C}_{\mathrm{EXT}}$ and $\mathrm{C}_{\mathrm{BOOT}}$ is proportional to the cyclical voltage loss. It must be:

Equation 2

$$
\mathrm{C}_{\mathrm{BOOT}} \ggg \mathrm{C}_{\mathrm{EXT}}
$$

E.g.: if $Q_{\text {gate }}$ is $30 n C$ and $V_{\text {gate }}$ is $10 \mathrm{~V}, \mathrm{C}_{\mathrm{EXT}}$ is 3 nF . With $\mathrm{C}_{\mathrm{BOOT}}=100 \mathrm{nF}$ the drop would be 300 mV .

If HVG must be supplied for a long time, the $\mathrm{C}_{\text {BOOT }}$ selection must also take the leakage and quiescent losses into account.
E.g.: HVG steady-state consumption is lower than $240 \mu \mathrm{~A}$, so if HVG $T_{O N}$ is $5 \mathrm{~ms}, \mathrm{C}_{\text {BOOT }}$ must supply $1.2 \mu \mathrm{C}$ to $\mathrm{C}_{\mathrm{EXT}}$. This charge on a $1 \mu \mathrm{~F}$ capacitor means a voltage drop of 1.2 V .
The internal bootstrap driver offers important advantages: the external fast recovery diode can be avoided (it usually has a high leakage current).

This structure can work only if $\mathrm{V}_{\text {OUT }}$ is close to GND (or lower) and, at the same time, the LVG is on. The charging time ($\mathrm{T}_{\text {charge }}$) of the $\mathrm{C}_{\mathrm{BOOT}}$ is the time in which both conditions are fulfilled and it must be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS $R_{\text {DSon (typical value: }}$ 120Ω). This drop can be neglected at low switching frequency, but it should be taken into account when operating at high switching frequency.

The following equation is useful to compute the drop on the bootstrap DMOS:

Equation 3

$$
V_{\text {drop }}=I_{\text {charge }} R_{\text {dson }} \rightarrow V_{\text {drop }}=\frac{Q_{\text {gate }}}{T_{\text {charge }}} R_{\text {dson }}
$$

where $Q_{g a t e}$ is the gate charge of the external power MOSFET, $R_{d s o n}$ is the on-resistance of the bootstrap DMOS and $T_{\text {charge }}$ is the charging time of the bootstrap capacitor.

For example: using a power MOSFET with a total gate charge of 30 nC , the drop on the bootstrap DMOS is about 1 V , if the $\mathrm{T}_{\text {charge }}$ is $5 \mu \mathrm{~s}$. In fact:

Equation 4

$$
\mathrm{V}_{\text {drop }}=\frac{30 \mathrm{nC}}{5 \mu \mathrm{~s}} \cdot 120 \Omega \sim 0.7 \mathrm{~V}
$$

$\mathrm{V}_{\text {drop }}$ should be taken into account when the voltage drop on $\mathrm{C}_{\mathrm{BOOT}}$ is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

Figure 11. Bootstrap driver

10 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10.1 SO-16 package information

Figure 12. SO-16 narrow package outline

Table 10. SO-16 narrow package mechanical data

Symbol	Dimensions (mm)		
	Min.	Typ.	Max.
A	-	-	1.75
A1	0.10	-	0.25
A2	1.25	-	-
b	0.31	-	0.51
c	0.17	-	0.25
D	9.80	9.90	10.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e	-	1.27	-
h	0.25	-	0.50
L	0.40	-	1.27
k	0	-	8°
ccc	-	-	0.10

Figure 13. SO-16 narrow footprint

11 Order codes

Table 11. Order codes

Order code	Package	Packaging
L6390D	SO-16	Tube
L6390DTR	SO-16	Tape and reel

12 Revision history

Table 12. Document revision history

Date	Revision	Changes
11-Sep-2015	9	Removed DIP-16 package from the whole document. Updated Table 3 on page 6 (added ESD parameter and value). Updated Table 4 on page 6 (updated $\mathrm{R}_{\mathrm{th}(\mathrm{JA})}$ value). Updated note 1.and 2. below Table 7 on page 10 (minor modifications, replaced $\mathrm{V}_{\text {CBOOTx }}$ by $\mathrm{V}_{\text {BOOTX }}$). Minor modifications throughout document.
07-Apr-2017	10	Updated Table 5 on page 7 (updated cross reference to Figure 4 on page 12 instead of removed Figure 3. Timing). Updated Table 6 on page 9 (added RPD_SD) and Table 8 on page 11 (added RON_OD). Updated Section 5 on page 12 (updated title, added Figure 4 and Figure 5). Added Section 6 on page 14 (and moved Table 9: Truth table to this section). Updated Figure 11 on page 20 and Figure 12 on page 21 (replaced by new figure). Minor modifications throughout document.
21-Mar-2018	11	Updated Figure of SO-16 package on page 1 and Figure 2: Pin connection (top view) on page 4. Updated Table 5 on page 7 (updated DT and MDT test conditions). Updated note 2. below Table 7 on page 11. Updated Section 6 on page 14. Minor modifications throughout document.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :

```
00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-
1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-
RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P}\mathrm{ 6131-
220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63
```

