

High voltage high and low-side 2 A gate driver

Datasheet - production data

Features

- Transient withstand voltage 600 V
- dV/dt immunity ± 50 V/ns in full temperature range
- Driver current capability:
 - 2 A source typ. at 25 °C
 - 2.5 A sink typ. at 25 °C
- Short propagation delay: 85 ns
- Switching times 25 ns rise/fall with 1 nF load
- Integrated bootstrap diode
- Single input and shutdown pin
- Adjustable deadtime
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- UVLO on both high-side and low-side sections
- · Compact and simplified layout
- · Bill of material reduction
- Flexible, easy and fast design

Applications

- Motor driver for home appliances, factory automation, industrial drives and fans
- HID ballasts
- Induction heating
- Welding
- Industrial inverters
- UPS
- · Power supply units
- DC-DC converters

Description

The L6494 is a high-voltage device manufactured with the BCD6 "offline" technology. It is a single chip half-bridge gate driver for N-channel power MOSFETs or IGBTs.

The high-side (floating) section is designed to stand a DC voltage rail up to 500 V, with 600 V transient withstand voltage. The logic inputs are CMOS/TTL compatible down to 3.3 V for easy interfacing control units such as microcontrollers or DSP.

The device is a single input gate driver with programmable deadtime, and also features an active-low shutdown pin.

Both device outputs can sink 2.5 A and source 2 A, making the L6494 particularly suited for medium and high capacity power MOSFETs\IGBTs.

The independent UVLO protection circuits present on both the lower and upper driving sections prevent the power switches from being operated in low efficiency or dangerous conditions.

The integrated bootstrap diode as well as all of the integrated features of this driver make the application PCB design simpler and more compact, and help reducing the overall bill of material. Contents L6494

Contents

1	Block diagram	3
2	Pin description and connection diagram	4
3	Electrical data	5
	3.1 Absolute maximum ratings	5
	3.2 Thermal data	
	3.3 Recommended operating conditions	6
4	Electrical characteristics	7
5	Truth table	1
6	Typical application diagram 1	2
7	Bootstrap driver	3
	C _{BOOT} selection and charging	3
В	Package information	5
	8.1 SO-14 package information	5
9	Ordering information1	7
10	Revision history 1	7

L6494 Block diagram

1 Block diagram

BOOTSTRAP DIODE BOOT VCC U٧ UV DETECTION DETECTION HVG LEVEL SHIFTER LOGIC HVG DRIVER $\overline{\mathrm{SD}}$ FLOATING STRUCTURE OUT IN VCC P LVG DRIVER LVG DT PGND DEADTIME SGND AM040065

Figure 1. Block diagram SO-14

2 Pin description and connection diagram

Figure 2. Pin connection SO-14 (top view)

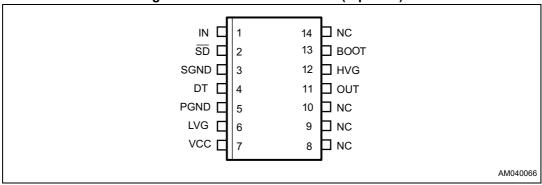


Table 1. Pin description

Pin no.	Pin name	Туре	Function	
1	IN	1	Output drivers logic input (is in phase with HVG and in opposition of phase with LVG)	
2	SD	-	Shutdown logic input (active-low)	
4	DT	I	Deadtime setting	
6	LVG ⁽¹⁾	0	Low-side driver output	
7	VCC	Р	Low-side section supply voltage	
11	OUT	Р	High-side (floating) section common voltage	
12	HVG ⁽¹⁾	0	High-side driver output	
13	BOOT	Р	High-side (bootstrapped) section supply voltage	
3	SGND	Р	Signal ground	
5	PGND	Р	Power ground	
8, 9, 10, 14	NC	-	Not connected	

The circuit guarantees less than 1 V on the LVG and HVG pins (at I_{sink} = 10 mA), with V_{CC} > 3 V. This
allows omitting the "bleeder" resistor connected between the gate and the source of the external MOSFET
normally used to hold the pin low.

L6494 Electrical data

3 Electrical data

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings⁽¹⁾

Cymhal	Parameter	Va	lue	Unit	
Symbol	Parameter	Min. Max.		Oint	
V _{CC}	Supply voltage	-0.3	21	V	
V _{PGND}	Low-side driver ground	V _{CC} - 21	V _{CC} + 0.3	V	
V _{OUT}	Output voltage	V _{BOOT} - 21	V _{BOOT} + 0.3	V	
V	Boot DC voltage	-0.3	500	V	
V _{BOOT}	Boot transient withstand voltage (T _{pulse} < 1 ms)	-	620	V	
V _{hvg}	High-side gate output voltage	V _{OUT} - 0.3	V _{BOOT} + 0.3	V	
V _{Ivg}	Low-side gate output voltage	PGND - 0.3	V _{CC} + 0.3	V	
V _i	Logic input pins voltage	-0.3	15	V	
dV _{OUT} /dt	Allowed output slew rate	-	50	V/ns	
P _{TOT}	Total power dissipation (T _A = 25 °C) SO-14	-	1	W	
T _J	Junction temperature	-	150	°C	
T _{stg}	Storage temperature	-50	150	°C	
ESD	Human body model	2	kV	-	

^{1.} Each voltage referred to SGND unless otherwise specified.

3.2 Thermal data

Table 3. Thermal data

Symbol	mbol Parameter		Value	Unit
R _{th(JA)}	Thermal resistance junction to ambient	SO-14	120	°C/W

Electrical data L6494

3.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Pin Parameter		Test condition	Min.	Max.	Unit
V_{CC}	VCC	Supply voltage	-	10	20	V
V _{PS} ⁽¹⁾	SGND - PGND	Low-side driver ground	-	-5	+5	٧
V _{BO} ⁽²⁾	BOOT - OUT	Floating supply voltage	-	9.3	20	٧
	OUT DC voltage	-	- 9 ⁽³⁾	480	V	
V _{OUT}	OUT	OUT transient withstand voltage	T _{pulse} < 1 ms	-	600	٧
f _{SW}	-	Maximum switching frequency	HVG, LVG load C _L = 1 nF	ı	800	kHz
T_J	-	Junction temperature	-	-40	125	°C
T _A	- Ambient temperature ⁽⁴⁾		-	-40	125	°C

^{1.} $V_{PS} = V_{PGND} - SGND$.

^{2.} $V_{BO} = V_{BOOT} - V_{OUT}$.

^{3.} LVG off. V_{CC} = 12.5 V. Logic is operational if V_{BOOT} > 5 V.

^{4.} Maximum ambient temperature is actually limited by $T_{\rm J}$.

4 Electrical characteristics

Table 5. Electrical characteristics (V_{CC} = 15 V; T_J = +25 °C; PGND = SGND)

Symbol	Pin	Parameter Parameter	Test condition	Min.	Тур.	Max.	Unit
Low-side s	Low-side section supply						
V _{CC_hys}		V _{CC} UV hysteresis	-	0.5	0.6	0.72	V
V _{CC_thON}		V _{CC} UV turn ON threshold	-	8.7	9.3	9.8	V
V _{CC_thOFF}	VCC vs.	V _{CC} UV turn OFF threshold	-	8.2	8.7	9.2	V
I _{QCCU}	SGND	Undervoltage quiescent supply current	$V_{CC} = \overline{SD} = 7 \text{ V}$ IN = SGND	-	135	200	μА
I _{QCC}		Quiescent current	V_{CC} = 15 V \overline{SD} = 5 V; IN = SGND	-	490	700	μА
High-side f	loating sec	tion supply ⁽¹⁾					
V _{BO_hys}		V _{BO} UV hysteresis	-	0.48	0.6	0.7	V
V _{BO_thON}		V _{BO} UV turn ON threshold	-	8.0	8.6	9.1	V
V _{BO_thOFF}		V _{BO} UV turn OFF threshold	-	7.5	8.0	8.5	V
I _{QBOU}	BOOT vs. OUT	Undervoltage V _{BO} quiescent current	$V_{BO} = \overline{SD} = 7 \text{ V}$ IN = SGND	-	20	30	μА
I _{QBO}	001	V _{BO} quiescent current	VBO = 15 V SD = IN = 5 V	-	90	120	μА
I _{LK}		High-voltage leakage current	$V_{hvg} = V_{out} = V_{boot} = 600 V$	-	-	8	μА
R _{DS(on)}		Bootstrap diode on-resistance ⁽²⁾	-	-	175	-	Ω
Output driv	ing buffers		•				
I _{SO}		High/low-side source short-circuit current	LVG/HVG ON T _J = 25 °C	1.6	2	-	Α
	IVC HVC	Current	Full temperature range ⁽³⁾	1.25	-	-	Α
I _{SI}	LVG, HVG	High/low-side sink short-circuit	LVG/HVG ON T _J = 25 °C	2	2.5	-	Α
O.		current	Full temperature range ⁽³⁾	1.55	-	-	Α
Logic inputs							
V _{il}	IN, SD vs.	Low level logic threshold voltage	-	0.95	-	1.45	V
V _{ih}	SGND	High level logic threshold voltage	-	2	-	2.5	V
I _{INh}	IN vs.	IN logic "1" input bias current	IN = 15 V	120	200	260	μА
I _{INI}	SGND	IN logic "0" input bias current	IN = 0 V	-	-	1	μА
I _{SDh}	SD vs.	SD logic "1" input bias current	SD = 15 V	-	-	1	μА
I _{SDI}	SGND	SD logic "0" input bias current	<u>SD</u> = 0 V	14	17	23	μА

Electrical characteristics L6494

Table 5. Electrical characteristics (V_{CC} = 15 V; T_J = +25 °C; PGND = SGND) (continued)

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
R _{PU_SD}	SD vs. SGND	SD pull-up resistor	-	185	250	310	kΩ
R _{PD_IN}	IN vs. SGND	IN pull-down resistor	-	58	75	125	kΩ
Dynamic c	haracteristi	cs (see Figure 3 and Figure 4)					
t _{on}	SD vs. LVG/HVG	High/low-side driver turn-on propagation delay		-	85	120	ns
t _{off}	SD vs. LVG/HVG; IN vs. LVG/HVG	High/low-side driver turn-off propagation delay	$V_{OUT} = 0 \text{ V; } V_{BOOT} = V_{CC};$ $C_{L} = 1 \text{ nF; } V_{i} = 0 \text{ to } 3.3 \text{ V}$	-	85	120	ns
MT	-	Delay matching, HS and LS turn-on/off ⁽⁴⁾	-	-	-	30	ns
t _r	LVG, HVG	Rise time	C _L = 1 nF	-	25	-	ns
t _f	LVG, HVG	Fall time	C _L = 1 nF	-	25	-	ns
			$R_{DT} = 0 \Omega$, $C_L = 1 nF$,	0.26	0.40	0.54	μS
DT	-	Deadtime setting range ⁽⁵⁾	R_{DT} = 100 k Ω , C_L = 1 nF, C_{DT} = 100 nF	2.10	2.70	3.30	μS
			R_{DT} = 200 k Ω , C_L = 1 nF, C_{DT} = 100 nF	4.00	5.00	6.00	μS
			$R_{DT} = 0 \Omega$, $C_L = 1 nF$,	-	-	85	ns
MDT	-	Matching deadtime ⁽⁵⁾	R_{DT} = 100 k Ω , C_L = 1 nF, C_{DT} = 100 nF	-	-	350	ns
			R_{DT} = 200 k Ω , C_L = 1 nF, C_{DT} = 100 nF	-	-	700	ns

^{1.} $V_{BO} = V_{BOOT} - V_{OUT}$

 $\mathsf{R}_{\mathsf{DSON}} = \left[\left(\mathsf{V}_{\mathsf{CC}} - \mathsf{V}_{\mathsf{BOOT1}} \right) - \left(\mathsf{V}_{\mathsf{CC}} - \mathsf{V}_{\mathsf{BOOT2}} \right) \right] / \left[\mathsf{I}_{1} \left(\mathsf{V}_{\mathsf{CC}}, \mathsf{V}_{\mathsf{BOOT1}} \right) - \mathsf{I}_{2} \left(\mathsf{V}_{\mathsf{CC}}, \mathsf{V}_{\mathsf{BOOT2}} \right) \right]$

where I_1 is the BOOT pin current when $V_{BOOT} = V_{BOOT1}$, I_2 when $V_{BOOT} = V_{BOOT2}$.

- 3. Characterized, not tested in production.
- 4. $MT = max. (|t_{on} (LVG) t_{off} (LVG)|, |t_{on} (HVG) t_{off} (HVG)|, |t_{off} (LVG) t_{on} (HVG)|, |t_{off} (HVG) t_{on} (LVG)|).$
- 5. MDT = $|DT_{LH} DT_{HL}|$ see *Figure 4*.

^{2.} R_{DSON} is tested in the following way:

Figure 3. SD timings

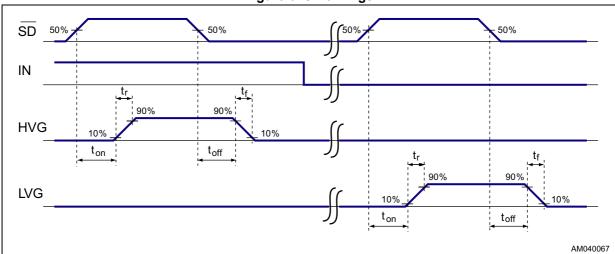
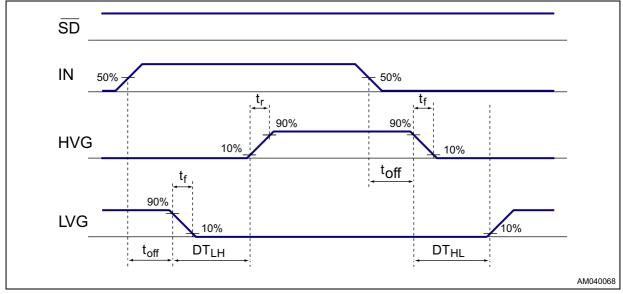



Figure 4. IN timings and deadtime

Electrical characteristics L6494

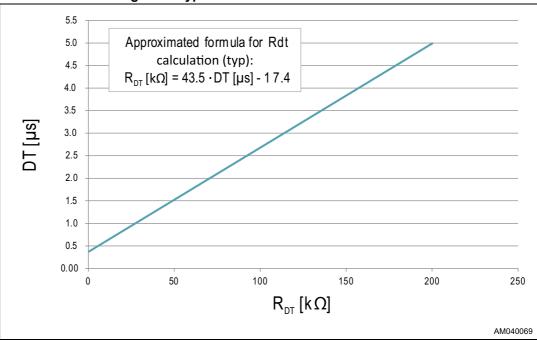


Figure 5. Typical deadtime vs. DT resistor value

L6494 Truth table

5 Truth table

Table 6. Truth table

Inp	out	Out	put
SD IN		LVG	HVG
L	X ⁽¹⁾	L	L
Н	L	Н	L
Н	Н	L	Н

^{1.} X = don't care.

6 Typical application diagram

Figure 6. Typical application diagram

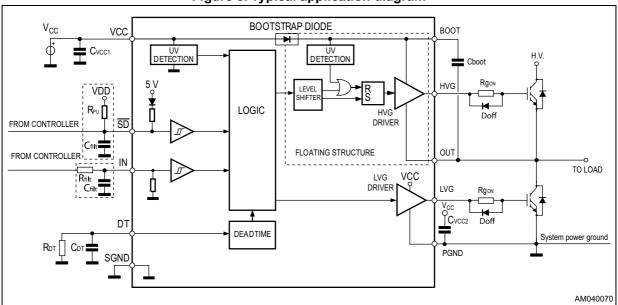
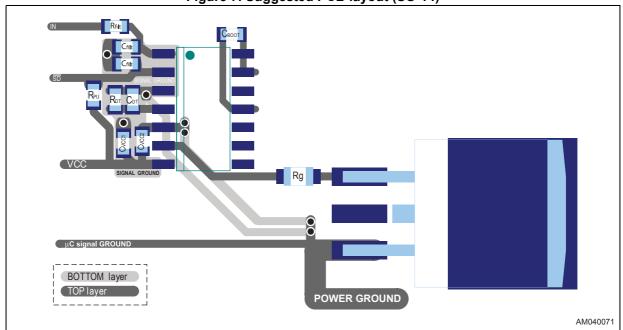



Figure 7. Suggested PCB layout (SO-14)

57

L6494 Bootstrap driver

7 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is usually accomplished by a high voltage fast recovery diode (*Figure 8*). In the L6494 an integrated structure replaces the external diode.

CBOOT selection and charging

To choose the proper C_{BOOT} value the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

Equation 1

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

Equation 2

$$C_{BOOT} >>> C_{EXT}$$

if Q_{qate} is 30 nC and V_{qate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop is 300 mV.

If HVG has to be supplied for a long time, the C_{BOOT} selection has also to take into account the leakage and quiescent losses.

HVG steady-state consumption is lower than 120 μ A, so if HVG T_{ON} is 5 ms, C_{BOOT} has to supply 0.6 μ C. This charge on a 1 μ F capacitor means a voltage drop of 0.6 V.

The internal bootstrap driver gives a great advantage: the external fast recovery diode can be avoided (it usually has great leakage current).

This structure can work only if V_{OUT} is close to SGND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS $R_{DS(on)}$ (typical value: 175 Ω). At low frequency this drop can be neglected. Anyway, the rise of frequency has to take into account.

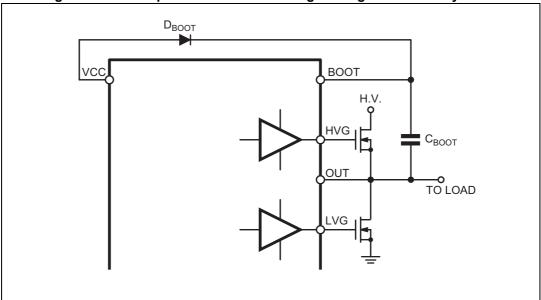
The following equation is useful to compute the drop on the bootstrap DMOS:

Equation 3

$$V_{drop} = I_{charge}R_{DS(on)} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}}R_{DS(on)}$$

where Q_{gate} is the gate charge of the external power MOS, $R_{DS(on)}$ is the on resistance of the bootstrap DMOS and T_{charge} is the charging time of the bootstrap capacitor.

Bootstrap driver L6494


For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the T_{charge} is 5 μs . In fact:

Equation 4

$$V_{drop} = \frac{30nC}{5\mu s} \cdot 175\Omega \sim 1V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

Figure 8. Bootstrap driver with external high voltage fast recovery diode

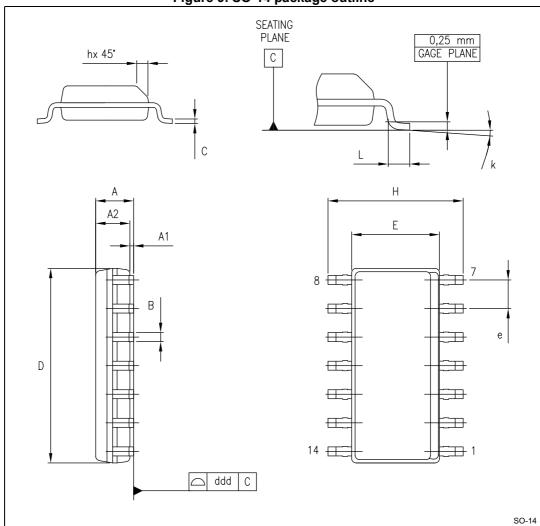
14/18 DocID030317 Rev 2

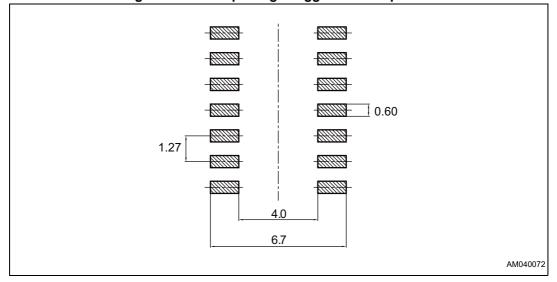
L6494 Package information

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

8.1 SO-14 package information




Figure 9. SO-14 package outline

Package information L6494

Table 7. SO-14 package mechanical data

Symbol		Dimensions (mm)				
Symbol	Min.	Тур.	Max.			
Α	1.35	-	1.75			
A1	0.10	-	0.25			
A2	1.10	-	1.65			
В	0.33	-	0.51			
С	0.19	-	0.25			
D	8.55	-	8.75			
E	3.80	-	4.00			
е	-	1.27	-			
Н	5.80	-	6.20			
h	0	-	-			
25	-	0.50	-			
L	0.40	-	1.27			
k	0	-	8			
ddd	-	-	0.10			

Figure 10. SO-14 package suggested land pattern

9 Ordering information

Table 8. Device summary

Order code	Package	Packaging
L6494LD	SO-14	Tube
L6494LDTR	SO-14	Tape and reel

10 Revision history

Table 9. Document revision history

Date	Revision	Changes
08-Feb-2017	1	Initial release.
14-Nov-2017	2	Updated Section: Description on page 1, Table 4 on page 6 and Table 5 on page 7.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 011003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63