- 2 INDEPENDENTLY CONTROLLED H-BRIDGES
- Rds,on $<0.9 \Omega$ @ $\mathrm{Tamb}=25^{\circ} \mathrm{C}, \mathrm{Vs}=14 \mathrm{~V}$
- 0.8A DC CURRENT WITHOUT HEAT SINK
- LOW QUIESCENT MODE lq $<200 \mu \mathrm{~A}$
- THEMAL PROTECTION
- CROSS CONDUCTION PROTECTION
- SUPPLY VOLTAGE UP TO 40V
- CMOS COMPATIBLE INPUTS
- OUTPUT SHORT-CIRCUIT PROTECTION

DESCRIPTION

The L9925 is a dual full bridge driver for stepper motor applications. Realized in BCD (Bipolar, CMOS \& DOS) techology, logic circuits, precise linear blocks and power transistors are combined to optimize circuit performance and minimize off chip components. Schmitt triggers are usea for all input stages and are fully compatibe with 5 V CMOS logic levels. When both enabic' siquals are low, the IC is commanded to a lon quiescent current state and will draw less tian ? $00 \mu \mathrm{~A}$ from the battery.

The charge pur 1 r is integrated on chip; no external compor=nis aire required. Full performance is maintanest or $9 \mathrm{~V}<\mathrm{Vs}<16 \mathrm{~V}$. Extended ranges of $6 \mathrm{~V}<-$'s $<9 \mathrm{~V}$ and $16 \mathrm{~V}<\mathrm{Vs}<40 \mathrm{~V}$ yields full functisnäil dut with relaxed performance. Over temcor ature protection and ESD protection to all pins ensures relability and reduces system integration failures.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are those values beyond whih damage to the device may occur. Functional operation under these condition isn't implied.
For voltages and currents applied externally to the device:

Symbol	Parameter	Value	Unit
Vvsdc	Dc Supply Voltage	-0.3 to 26	V
Vvsp	Supply Voltage Pulse (T $\leq 400 \mathrm{~ms})^{(1)}$	40	V
lout	DC Output Load Current	± 1.2	A
lout max	DC Output Current: for VOUT > VVS +0.3 V or VOUT $<-0.3 \mathrm{~V}$ the internal DMOS reverse and/or substrate diode become conductive and the applied current should not exceed the specified limit.	± 1.8	A
VIN1,2	DC Input Voltage	-0.3 to 7	V
Ven	Enable Input Voltage	-0.? い	V
$\mathrm{T}_{\text {stg, }} \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	100150	${ }^{\circ} \mathrm{C}$
Ptot		$\begin{gathered} 5 \\ 1.23 \\ 2 \end{gathered}$	$\begin{aligned} & \hline W \\ & w \\ & w \end{aligned}$

(1) Device may be overstressed if pulsed simultaneous with short circuit at one or $\pi^{\circ} \epsilon$ o ine outputs will be present.

PIN CONNECTION

THERMAL DATA

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\mathrm{j} \text { TS }}$	Thermal Shut-down junction temperature min.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{jTSH}}$	Thermal Shut-down thereshold hysteresis typ.	25	${ }^{\circ} \mathrm{C}$
Rth $_{\mathrm{j} \text {-amb }}$	Thermal Resistance Junction-ambient ${ }^{(2)}$	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rth j -pins	Thermal Resistance Junction-pins	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]
PIN FUNCTIONS

N.	Name	Function
1	PGND1	Ground for DMOS sources in bridge 1
2	IN1	Digital Input from motor controller for bridge 1
3	EN1	Logic enable/disable for bridge 1 (active high)
4, 5	NC	No connect
6	OUT1	Output of one half of bridge 1
7, 8	GND	Ground
9	OUT3	Output of one half of bridge 2
10, 11	NC	No connect
12	EN2	Logic enable/disable for bridge 2 (active high)
13	IN3	Digital Input from motor controller for bridge 2
14	PGND2	Ground for DMOS sources in bridge 2
15	NC	No connect
16	IN4	Digital Input from motor controller for bridge 2
17	OUT4	Output of one half of bridge 2
18, 19	NC	No connect
20	VS2	Supply Voltage for bridge 2
21, 22	GND	Ground
23	VS1	Supply Voltage for bridge 1
24, 25	NC	No connect
26	OUT2	Output of one half o، bivice 1
27	IN2	Digital Input fro' 1 motu controller for bridge 1
28	NC	No conne 't

ELECTRICAL CHAR.A:TEIISTICS (Vs = 9 to $16 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=-40$ to $150^{\circ} \mathrm{C}{ }^{(3)}$, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
Is	Tuinocent Current	EN1 $=\mathrm{EN} 2=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=85^{\circ} \mathrm{C}$			200	$\mu \mathrm{A}$
		EN1 $=\mathrm{EN} 2=5 \mathrm{~V}$; load $=0 \mathrm{~A}$		5	12	mA
CD_{75}	Switch on Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{Vs}=14 \mathrm{~V} ; \mathrm{I}_{0}=300 \mathrm{~mA}$		0.75	0.8	Ω
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V} ; \mathrm{l}_{0}=300 \mathrm{~mA}$		1.5	1.9	Ω
$\mathrm{T}_{\text {d-on }}$	Turn-on delay	See Fig 1		10	50	$\mu \mathrm{s}$
Td-SB	Standby setting time	See Fig 1		50	200	$\mu \mathrm{S}$
Td-off	Turn-off delay	See Fig 1		10	50	$\mu \mathrm{s}$
trise	Output rise time (10 to 90\%)	See Fig 1	0.5	5	20	$\mu \mathrm{s}$
taall	Output fall time (90 to 10\%)	See Fig 1	0.5	5	20	$\mu \mathrm{s}$
ILo	Output leakage current	$\mathrm{EN}=0 \mathrm{~V} ; \mathrm{V}_{0}=\mathrm{V}$ s or GND	-10		10	mA
INx, ENx	Logic Input Low voltage		-0.3		1.5	V
	Logic Input High voltage		3.5		6	V
	Hysteresis		0.5	1.0	2.0	V
Ibias	Input bias current		-50		300	$\mu \mathrm{A}$

The voltage refered to GND and currents are assumed positive, when the current flows into the pin.
(3) Tested up to $125^{\circ} \mathrm{C}$, parameter guaranted by correlation up to $150^{\circ} \mathrm{C}$

Logic Levels

All inputs are positive, non inverting logic

Logic State	Voltage Range
0	-0.3 to 1.5 V
1	3.5 to 6.0 V

Truth Table
Enable/ Disable

EN1	EN0	Bridge 1	Bridge 2	Iq
0	0	Disabled	Disabled	$<200 \mu \mathrm{~A}$
0	1	Disabled	Enabled	$<12 \mathrm{~mA}$
1	0	Enabled	Disabled	$<12 \mathrm{~mA}$
1	1	Enabled	Enabled	$<12 \mathrm{~mA}$

General Operation

With the bridge enabled, each input INx, maps directly to the corresponding output OUTx.
The output voltage will be equal to the difference between the supply rail and the product of the load current ad the on resistance of the output switch. Vout = Vsupply - (RDs,ON • ILOAD).
Sourced load currents are positive.

IN1	OUT1	IN2	OUT2	IN3	OUT3	IN4	OUT4
0	0	0	0	0	0	0	0
1	Vs	1	Vs	1	VS	1	I'S

Figure 1. Timing Diagram

-icure 2. Typical Ron - Characteristics of Source and Sink Stage

Figure 3. ON - Resistance vs Supply Voltage

Figure 4. Application Diagram

Figure 4 shows a typical apr. itat on diagram for DC motor driving. To ass ! ! \in the safety of the circuit in the reverse batte y condition a reverse protetion diode D_{1} is 7fce:sary. The transient protection diode D? must assure that themaximum supply voltase v s during the transients at the VBAT line voll: k a limited to a value lower than the absol'tc inciximu ratings for Vvsp. The capacities Cb ait 'sed to lower Vs-EMR and its values derend on the driving load.
The resistance feedback loop realized by Ro limited to the $\mu \mathrm{P}$ power supply line by the diode D_{0} allows open load detection. To protect the device at the outputs against EMI or ESD $>2 \mathrm{KV}$ external capacitors Cex may be used.

CIRCUIT DESCRIPTION

L9925 is a dual full bridge IC designed to drive DC motors, stepper motors and other inductive loads. Eah bridge has 4 power DMOS transistor with Roson $=0.75 \Omega$ and the relative protection and control circuitry (see fig. 5). The 4 half bridges can be controlled independently by means of the 4 inputs $\operatorname{IN} 1, \mathrm{IN} 3$, IN4 and 2 enable inputs ENABLE1 and ENABLE2.

LOGIC DRIVE (true table for the two full bridges)

INPUTS			OUTPUT MOSFETS
	$\begin{aligned} & \hline \text { IN1 } \\ & \text { IN3 } \end{aligned}$	$\begin{aligned} & \text { IN2 } \\ & \text { IN4 } \end{aligned}$	
$\mathrm{EN} 1=\mathrm{EN} 2=\mathrm{H}$	$\begin{aligned} & \hline \text { L } \\ & \text { L } \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	Sink 1, Sink2 Sink1, Source2 Source1, Sink2 Source1, Source2
@Tj > 150 ${ }^{\circ} \mathrm{C}$	X	X	All transistors turned OFF
$\mathrm{EN} 1=\mathrm{EN} 2=\mathrm{L}$	X	X	All transistors turned OFF

L = Low; H = High; X = Don't care

CROSS CONDUCTION

The device guarantees the absence of cross-conduction by watching internal gate-source voltage of the driving power DMOS.

TRANSISTOR OPERATION

ON STATE

When one of POWER DMOS transistors is ON it can be considered as a resistor $\operatorname{RDS}(\mathrm{ON})=0.75 \Omega$ at a junction temperature of $25^{\circ} \mathrm{C}$

In this condition the dissipated power is ginen by:

$$
\operatorname{Pon}=\operatorname{RDS}(\mathrm{ON}) \cdot \operatorname{IDS^{2}}
$$

The low Rds(on) of the Multipower BCD process can provide high currents with low power dissipation.

OFF STATE

When one of the POWER DMOS transistor is OFF the Vos voltage is equal to the supply voltage and only the leakage current loss flows.
The power dissipation during this period is given by:

$$
\text { Poff }=\text { Vs } \cdot \text { IDSs }
$$

TRANSITIONS
Like all MOS power transistors the DMOS POWER transistors have an intrinsic diode between their source and drain that can operate as a fast freewheeling diode in switched mode applications. During recirculation with the ENABLE input is low, the POWER MOS is OFF and the diode voltage it is clamped to its characteristics. When the ENABLE input is low, the POWER MOS is OFF and the diode carries all of the recirculation current. The power dissipated in the transitional times in the cycle depends upon the voltage and current waveforms in the application.

$$
\text { Ptrans }=\operatorname{IDS}(\mathrm{t}) \cdot \operatorname{VDS}(\mathrm{t})
$$

Figure 5a. Two phase chopping

Figure 5b. One phase chopping

Figure 5c. Enable chopping

N1 $=$

THERMAL PROTECTION

A thermalprotection circuit has been included that will disable the device if the junction temperature reaches $150^{\circ} \mathrm{C}$ ．When the temperature has fallen to a safe level the device restarts under the con－ trol of the input and enable signals．

APPLICATION INFORMATION

RECIRCULATION

During recirculationwith the ENALBE input high， the voltage drop across the transistor is RDS（ON）． for voltages less than 0.6 V and is clamped at a voltages depending on the characteristics of the source－drain diode for greater voltages．Although the device is protected against cross conduction．

POWER DISSIPATION each bridge

In order to achieve the high performance provided by the L9925 some attention must be paid t en－ sure that it has an adequate PCB area to dissi－ pate the heat．The forst stage of any thermal de－ sign is to calculate the dissipated power in the application，for this example the half step opera－ tion shown in Fig． 6 is considered．

RISE TIME TR
When an arm of the half bridge is turned or．cur－ rent begins to flow in the inductive locd ur til the maximum current IL is reached after a time Tr， The dissipated energy Eoff／ON．

$$
\text { EOFF/ON }=\left[R_{D C,}(C N) \cdot \mathrm{IL}^{2} \cdot T \mathrm{R}\right] \cdot \frac{2}{3}
$$

Figure 6.

ON TIME Ton

During this time the energy dissipated is due to the ON resistance of the transistors Eon and the
commutation Ecom．As two of the POWER DMOS transistors are ON EoN is given by：

$$
\mathrm{EON}=\mathrm{IL}^{2} \cdot \operatorname{RDS}(\mathrm{ON}) \cdot 2 \cdot \mathrm{TON}
$$

In the commutation the energy dissipated is：

ECON $=\mathrm{Vs} \cdot \mathrm{IL} \cdot \mathrm{TCOM} \cdot \mathrm{fswitch} \cdot \mathrm{TON}$

Where：
Tсом＝Communication Time and it is assume ${ }^{2}$ that：；
TCOM $=$ trise $=$ tfall $\leq 20 \mu \mathrm{~s}$
Tswitch＝Chopper frequency

FALL TIME TF

For this example it に＇scumed that the energy dissipated in this pa：of the cycle takes the same form as that shr，w．n for the rise time：

$$
E^{-} \cdot O r F / O N=\left[\operatorname{RDS}(O N) \cdot \mathrm{IL}^{2} \cdot \mathrm{TF}\right] \cdot \frac{2}{3}
$$

いいESCENT ENERGY

The last contribution of the energy dissipation is due to the quiescrent supply current and is given by：

$$
\text { EqUIESCENT }=\text { IQUIESCENT } \cdot \mathrm{Vs} \cdot \mathrm{~T}
$$

TOTAL ENERGY PER CYCLE

$$
\begin{gathered}
\text { Eтот }=(2 \cdot \text { EOFF/ON }+ \text { EON }+ \text { Ecom }) \text { bridge1+ } \\
+(2 \cdot \text { EOFF/ON }+ \text { EON }+ \text { ECOM }) \text { bridg2 }+ \text { EQUIESCENT }
\end{gathered}
$$

The total power dissipation PDIs is simply：
$\mathrm{T}_{\mathrm{R}}=$ Rise time

$$
P_{\text {DIS }}=\frac{E_{\text {tot }}}{T}
$$

ToN＝ON time
$\mathrm{T}_{\mathrm{F}}=$ Fall time
Toff＝OFF time
T＝Period

$$
T=T R+T O N+T F+\text { TOFF }
$$

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.1		0.3	0.004		0.012
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
C		0.5			0.020	
c1			$45^{\circ}(t y p)$.			
D	17.7		18.1	0.697		0.713
E	10		10.65	0.394		0.419
e		1.27			0.050	
e3		16.51			0.65	
F	7.4		7.6	0.291		0.299
L	0.4		1.27	0.016		0.050
S			$8{ }^{\circ}(m a x)$.			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
LV8133JA-ZH LV8169MUTBG LV8860PV-TLM-H MC33931EKR2 MC34GD3000EP FSB50550TB2 FSBF15CH60BTH MP6507GR-P MP6508GF MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 CAT3211MUTAG LA6245P-CL-TLM-E LA6245P-TLM-E LA6565VR-TLM-E LB11650-E LB1694N-E LB1837M-TLM-E LB1845DAZ-XE LC898111AXB-MH LC898300XA-MH SS30-TE-L-E STK531-345A-E STK581U3A0D-E STK58AUNP0D-E STK621-068C-E STK621-140C STK621-728S-E STK625-728-E STK672-400B-E STK672-432AN-E STK672-432BN-E STK672-440AN-E STK672-442AN-E AMIS30621AUA FSB50550ASE 26700 LV8161MUTAG LV8281VR-TLM-H LV8702V-TLM-H LV8734VZ-TLM-H LV8773Z-E LV8807QA-MH MC33932EK MCP8024T-H/MP TND027MP-AZ BA5839FP-E2 MP6507GQ-P

[^0]: ${ }^{(2)}$ With $6 \mathrm{~cm}^{2}$ on board heat sink area

