High power LED driver for automotive applications

Datasheet - production data

Features

- AEC-Q100 qualified
- General
- ST SPI communication v4.1
- 5.5 to 24 V Operating battery voltage range
- Load dump protected
- QFN40L 6x6 (wettable flanks) with exposed pad
- Timeout watchdog and limp home function
- Low standby current
- Buck section
- Integrated switching mosfets
- Lossless current sensing without need of external components
- Very accurate LED current setting programming inductor's peak current and peak-to-peak current ripple
- Adjustable peak current by SPI
- Adjustable current ripple by SPI
- Integrated PWM generation unit with 10-bit resolution and phase shift
- Peak current control
- Constant VLED x TOFF architecture
- Protection and diagnostic
- Battery under voltage
- Temperature warning (2 thresholds)
- Overtemperature shutdown
- LED voltage digital feedback through SPI
- Buck outputs short circuit and open load protection

Applications

- Low Beam
- High beam
- Daytime running light
- Turn indicator
- Position light
- Side marker
- Fog light

Description

The L99LD20 is a flexible LED driver, which is specifically designed for the control of two independent high brightness LED strings for automotive front lighting applications. It consists of a high efficiency monolithic dual buck converter.

The buck converters integrate n-channel MOSFET which is driven by a bootstrap circuit.

When more than two LED channels are required on one module, then more devices L99LD20 can be combined; also with L99LD21 device incorporating Boost Controller - from which L99LD20 derivate.

Contents

1 Introduction 6
1.1 Typical application 7
2 Buck converters 11
2.1 General description 11
2.2 Bootstrap circuit 11
2.3 Peak and average current setting 11
2.4 Buck converter's blank time 13
2.5 Buck converter's start-up 14
2.6 Switching frequency 14
3 Functional description 15
3.1 Operating modes 15
3.1.1 Standby mode 15
3.1.2 Pre-standby mode 16
3.1.3 Reset mode 16
3.1.4 Limp home 16
3.1.5 Active mode 17
3.2 Programmable functions 18
3.2.1 Activation of the buck output 18
3.2.2 PWM dimming 18
3.3 Protections 19
3.3.1 Temperature warning 19
3.3.2 Overtemperature shutdown 20
3.3.3 VS under voltage lockout 20
3.3.4 Buck T_{ON} minimum operation 20
3.3.5 Buck output's short circuit to GND 20
3.3.6 Buck $\mathrm{T}_{\text {ON }}$ maximum operation 21
3.3.7 Buck Open Load detection 21
4 SPI functional description 22
4.1 SPI protocol 22
4.2 SPI communication 22
4.3 Address mapping 24
4.4 Registers description 26
4.4.1 Control Register description 26
4.4.2 Status Register description 31
4.4.3 Customer test and trimming registers description 36
4.4.4 Customer test and trimming procedure description 37
5 Electrical specifications 42
5.1 Absolute maximum ratings 42
5.2 ESD protection 42
5.3 Thermal characteristics 43
5.4 Electrical characteristics 44
5.4.1 Supply 44
5.4.2 Buck 45
5.4.3 SPI 51
5.4.4 Direct input 52
5.4.5 PWM dimming 53
5.4.6 Digital timings 54
6 Package and PCB thermal data 55
6.1 QFN-40L 6x6 thermal data 55
7 Package information 56
7.1 QFN-40L 6x6 package information 56
8 Order codes 58
Appendix A Glossary 59
Revision history 60

List of tables

Table 1. Pin functionality. 9
Table 2. Operating modes 17
Table 3. DIN pin Map for Buck1 and Buck2 18
Table 4. Command byte (8 bit) 22
Table 5. Data byte 2 22
Table 6. Data byte 1 22
Table 7. Data byte 0 23
Table 8. Operation code definition 23
Table 9. Global Status Byte 23
Table 10. Global Status Byte description 24
Table 11. RAM memory map 24
Table 12. ROM memory map 25
Table 13. CR\#1: Control Register 1 26
Table 14. CR\#2: Control Register 2 27
Table 15. CR\#3: Control Register 3 28
Table 16. CR\#4: Control Register 4 29
Table 17. Constant VLED x TOFF selection. 29
Table 18. DIN map table for Buck Cell X 30
Table 19. Buck input voltage window 30
Table 20. SR\#1: Status Register 1 31
Table 21. SR\#2: Status Register 2 33
Table 22. SR\#3: Status Register 3 35
Table 23. Watchdog status 35
Table 24. CT: Ctm Trimming Register 36
Table 25. Writing test conditions. 37
Table 26. Testing procedure description 39
Table 27. Default peak current selection for Buck Cell 1 41
Table 28. Default VLEDxTOFF Selection for Buck Cell 1 41
Table 29. Absolute maximum ratings 42
Table 30. ESD protection 42
Table 31. QFN40L 6x6 thermal resistance 43
Table 32. Thermal characteristics. 43
Table 33. Supply 44
Table 34. Buck converter power stage 45
Table 35. Inductor peak current selection 47
Table 36. VLEDxTOFF constants. 50
Table 37. SPI signal description 51
Table 38. SPI timings 51
Table 39. Direct Input pin limits 52
Table 40. PWMCLK and Fall back PWM description 53
Table 41. Digital timings description 54
Table 42. PCB properties 55
Table 43. QFN-40L 6×6 mechanical data 57
Table 44. Device summary 58
Table 45. Glossary 59
Table 46. Document revision history 60

List of figures

Figure 1. Functional block diagram 7
Figure 2. Typical application schematic 8
Figure 3. Application diagram 8
Figure 4. Connection diagram 9
Figure 5. Peak current control principle 12
Figure 6. Inductor and mosfet current waveforms 13
Figure 7. Device state diagram 15
Figure 8. Testing flow chart 38
Figure 9. IL_PEAK vs DAC code - Low $\mathrm{R}_{\text {dson }}$ 49
Figure 10. IL_PEAK vs DAC code - High $\mathrm{R}_{\text {dson }}$ 49
Figure 11. $V_{\text {LED }} \times T_{\text {OFF }}$ vs DAC code 50
Figure 12. PWM clock failure and reset sequence 53
Figure 13. QFN-40L 6×6 on four-layers PCB 55
Figure 14. QFN-40L 6x6 package dimensions 56

1 Introduction

The L99LD20 is a monolithic driver IC, which controls the current of two independent high power LED strings, whose forward current and voltage can reach up to 1.5 A (average) and up to 50 V respectively.

This device has been designed with dedicated functions, in order to fulfill the stringent requirements of automotive front lighting applications.

The device offers a high level of flexibility, without any change of the external components, thanks to its programmability through the ST SPI interface. This feature support generic platform approaches, which require a software configurability of several parameters. This robust interface, offers a detailed diagnostic of the device itself, as well as of the controlled LED strings.

As the device potentially controls safety critical functions such as low beams and turn indicators, built-in features are integrated in order to support a high level of functional safety. The L99LD20 features a timeout watchdog, a monitoring of the watchdog counter, a limp home function and a direct input. The ST SPI protocol takes into account FMEA case.

The device consists of two independent integrated buck converters, whose input voltage is compatible with $\mathrm{V}_{\text {BUCKIN }}$. The integrated buck converters are based on constant off-time architecture (for a given LED output voltage) and control the peak current and the peak-topeak current ripple of their respective inductors. Operating in continuous conduction mode, the average of each LED string's current, which is connected to the output of each buck converter, is tightly controlled. This architecture, which consists of two independent buck stages, allows the control of a wide range of LED strings, whose forward voltage is independent from the battery voltage.

With the aim of ensuring a wide operating inductor current range, the Buck mosfets can be set in low or high $R_{D S}$ on modes, so that two different inductor peak current (I $\mathrm{I}_{\text {Lx PEAK }}$) ranges $[0.179 \mathrm{~A} \div 0.8 \overline{49} \mathrm{~A}]$ or $[0.362 \mathrm{~A} \div 1.695 \mathrm{~A}$] can be selected.

The average LED current is controlled by setting the inductor's peak current and peak-topeak current ripple. Sensing of the peak current is integrated, not requiring any external shunt resistance, which saves cost and reduces the power dissipation.

Buck n-channel mosfet $R_{D S}$ on value depends on the operative conditions as junction temperature, Input voltage and LED string current. For example, at $\mathrm{V}_{\text {Buckin }}=45 \mathrm{~V}$, $\mathrm{l}_{\text {led }}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ the maximum $R_{D S _}$on is $400 \mathrm{~m} \Omega$ (low $R_{D S _} \mathrm{ON}$ mode).

1.1 Typical application

Figure 1. Functional block diagram

Figure 2. Typical application schematic

Figure 3. Application diagram

Figure 4. Connection diagram

Table 1. Pin functionality

Pin \#	Name	Function
1	V3V3	Output of the 3.3 V regulated internal supply. Connect a low ESR capacitor (4.7 μ F) close to this pin.
2	TEST	Internal function. Left open.
3	CSN	Chip Select Not (active low) for SPI communication. It is the selection pin of the device. It is a CMOS compatible input.
4	PWMCLK	Clock input for the internal PWM dimming generator.
5	SGND	Signal Ground connection.
6	SCK	Serial Clock for SPI communication. It is a CMOS compatible input.
7	VSPI	Connection to external 3.3 V or 5 V supplies voltage. The external supply powers SPI interface and the I/O signal pins to the microcontroller. It is suggested to connect 100nF capacitor close to this pin.
9	SDO	Serial Data Input for SPI communication. Data is transferred serially into the device on SCK rising edge.
10	DIN	Serial Data Output for SPI communication. Data is transferred serially out of the device on SCK falling edge.
16	LX2F	Connection to the switching source node of the buck2. This pin must be connected to external free-wheeling diode.
17	LX2S	Kelvin connection to the switching source node of the buck2. This pin has to be connected to external bootstrap capacitance.

Table 1. Pin functionality (continued)

Pin \#	Name	Function
18	BUCKIN2	Connection to the input of the buck channel 2
20	CBOOT2	Connection to the bootstrap capacitor (100nF) of the buck channel 2.
22,38	PGND	Power Ground connection.
23	VLED2	Connection to the anode of the LED string for read back of the forward voltage of the channel 2.
24	VLED1	Connection to the anode of the LED string for read back of the forward voltage of the channel 1.
25	LX1F	Connection to the switching source node of the buck1. This pin must be connected to external free-wheeling diode.
26	LX1S	Kelvin connection to the switching source node of the buck1. This pin has to be connected to external bootstrap capacitance.
30	BUCKIN1	Connection to the input of the buck channel 1.
31	VBS	Input supply pin of the IC. Connect VS to the battery voltage.
35	TEST1	Internal function. To be tied to GND.
37	SGND2	Signal ground connection.
40	TEST2	Internal function. To be tied to GND.
$11,12,13$, $14,15,19$, $21,27,29$, $32,33,34$, 36,39	NC	Not connected

2 Buck converters

2.1 General description

The L99LD20 features two independent buck converters with integrated switching mosfets with forward peak current as high as specified maximum $I_{\text {Lx_PEAK }}$ (where x indicates Buckx peak current) 1.695 A. They are optimized to deliver a constant current to LED strings.

The $R_{\text {DS_ON }}$ of the n-channel mosfets can be set programming the appropriate bit in the control register (see bits <3:2> on Table 13: CR\#1: Control Register 1): high R_{DS} _on mode (only one half power stage enabled) or low $R_{\text {DS_ON }}$ mode (both half power stages enabled).
This feature allows having two different inductor peak current ranges, 0.179 $\mathrm{A} \div 0.849 \mathrm{~A}$ or $0.362 \mathrm{~A} \div 1.695 \mathrm{~A}$, respectively for high R_{DS} _on and low $\mathrm{R}_{\text {DS_on }}$ mode, so achieving the highest of current sense accuracy in the whole current range.
The buck converters are based on constant off-time architecture, which regulates the peak current in each inductor. The monitoring of the inductor peak current is done through integrated senseFETs. This results in a lossless high side current sensing, which does not require any external shunt resistor, and improves the system efficiency.
This architecture provides an inherent cycle-by cycle current limitation and a fast transient response, without any compensation of the control loop.
The average LED current in each LED string is configurable by the SPI, through configuration of the inductor peak current and peak-to-peak current.

The dimming of the LED strings can be realized through the direct input pin (DIN) or through the internal 10-bit PWM dimming generator.

2.2 Bootstrap circuit

The L99LD20 has built-in high side n-channel switching mosfets, which are driven by gate drivers. Each gate driver uses a bootstrap circuit, consisting of an integrated diode and an external capacitor between the LX1S and CBOOT1 pins, respectively between the LX2S and CBOOT2 pins.

The buck converters impose a minimum off-time (TofF_min) to ensure that the bootstrap capacitor recharges every cycle to a voltage which avoids the switching mosfet to operate in linear mode. TOFF_MIN restricts the maximum duty cycle of the buck converters for a given switching frequency. This effect is more pronounced at high switching frequencies and limits the maximum ratio between the buck input voltage ($\mathrm{V}_{\text {BUCKIN }}$) and the LED strings' forward voltage. One way to overcome this limitation is reducing switching frequency, by selecting high constant VLED xTOFF and/or increase the inductance value.

2.3 Peak and average current setting

In buck converters, the inductor is directly connected to the load during the complete switching cycle (see Figure 5: Peak current control principle). The average inductor current is equal to the average LED string current. Operating in continuous conduction mode (i.e. the inductor current never decays to zero during the off-phase), if the inductor current is tightly controlled, the LED current will be regulated as well.

Figure 5. Peak current control principle

At the beginning of a switching period the MOSFET M1 is turned on, and the inductor current $\mathrm{I}_{\mathrm{L} 1}$ increases. The mosfet is activated for a minimum on-time $\mathrm{T}_{\text {ON_MIN }}$ in order to avoid that the on-phase is ended up by spurious noise, which is caused by the switch-on.

During mosfet activation, the inductor current, $\mathrm{I}_{\mathrm{L} 1}$, increases until reaching a maximum value, $I_{\text {L1_PEAK, }}$ which is set through a dedicated control register (see bits <23:18> and bits $<17: 12>$ on Table 14: CR\#2: Control Register 2). When $l_{L 1}$ reaches its peak value, the switching mosfet is turned off. The mosfet remains off for a time $T_{\text {OFF }}$, which is derived from the configured constant VLED1xTOFF1 (see bits $<11: 8>$ and bits $<7: 4>$ on Table 14: CR\#2: Control Register 2), where $\mathrm{V}_{\mathrm{LED} 1}$ is the forward voltage of the LED string, which is connected at the output of the buck converter 1.

During $\mathrm{T}_{\mathrm{OFF}}$, the inductor current decreases by:

$$
\Delta \mathrm{I}_{\mathrm{L} 1 _\mathrm{PP}}=\frac{\left(\mathrm{V}_{\mathrm{LED} 1}-\mathrm{V}_{\mathrm{F}_{-} \mathrm{D} 1}\right)}{\mathrm{L}_{1}} \cdot \mathrm{~T}_{\mathrm{OFF} 1} \sim \frac{\mathrm{~V}_{\mathrm{LED} 1} \cdot \mathrm{~T}_{\mathrm{OFF} 1}}{\mathrm{~L}_{1}}
$$

where $\Delta L_{L 1}$ PP is the inductor peak to peak current and $V_{F_{D}}$ is the forward voltage of the diode D1. Ās D1 is a Schottky diode with a low forward voltage, $\mathrm{V}_{\mathrm{F}_{-} \mathrm{D} 1}$ can be in general neglected, compared to $\mathrm{V}_{\mathrm{LED} 1}$.

Note: \quad Once the VLEDxTOFF constant for a given buck converter is selected by SPI, the peak-topeak inductor current ripple is constant. In particular, it depends neither on the buck input voltage nor on the LED forward voltage.
The ripple current through the LED strings is reduced by means of an external capacitor in parallel with the LEDs.

Figure 6. Inductor and mosfet current waveforms

Referring to the Figure 5 and Figure 6 the average LED current - valid for both Buck 1 and Buck 2 - is therefore:

$$
I_{L E D 1 _A V G}=I_{L 1 _A V G}=I_{L 1 _P E A K}{ }^{*}-\frac{\left(\Delta I_{L 1 _P P}\right)}{2}=I_{L_{1} _P E A K}-\frac{\left(V_{L E D} \cdot T_{O F F 1}\right)}{2 L}
$$

where $I_{\text {L1_PEAK* }}$ results from $I_{\text {L1_PEAK }}$ (see Table 35) corrected with loop delay ($t_{\text {loop_delay }}$) In order to achieve the best accuracy versus input voltage variation during current sensing process, a defined buck input voltage window must be selected, by means of a dedicated control register (see bits $<5: 4>$ and bits $<3: 2>$ on Table 15: CR\#3: Control Register 3).

2.4 Buck converter's blank time

The buck converters have a minimum on-time TBLANK_BUCK. Although the inductor's target $^{\text {and }}$ peak current $l_{\text {Lx_PEAK }}$ is reached before this time has elapsed, the switch is kept on. This delay is used as a leading-edge blank time, in order to avoid a premature end of the switching cycle, which might be caused by the noise, which results from the commutation of the buck's mosfet.

2.5 Buck converter's start-up

While the device and the system are protected against short circuit conditions of the buck's output to GND, the device inhibits the detection of the short circuit during the startup phase TSTARTUP.

A startup phase is applied in the following conditions:

- If one of the buck converters is activated for the first time after a power on reset (POR), including buck activation after device wake-up;
- If one of the buck converters has been deactivated for more than $t_{\text {DELAY }}$;
- If one of the buck converters has been latched off prior to a Read and Clear command;
- If one of the buck converters is re-activated after a VS under voltage event.

After these events, it is possible that the output capacitors of the buck converters are completely discharged. The charging of the buck output capacitors might lead switching cycles with short on-time (shorter than $\mathrm{T}_{\mathrm{ON} \text { MIN }}$), which could potentially lead to a wrong detection of a shorted buck output. The introduction of this start-up phase avoids this wrong diagnostic.

2.6 Switching frequency

For a given buck converter, the switching frequency depends on the buck input voltage and the forward voltage of the LED string, which is connected to its output.

In continuous conduction mode, $\mathrm{T}_{\text {OFF }}$ is given by:

$$
T_{O F F}=(1-D) \cdot T=\frac{1-D}{F_{S W}}
$$

Where D is the buck converter's duty cycle, T and F_{SW} are respectively the switching period and frequency.
Neglecting the drop voltage across the mosfet, the inductor's DC resistance and the diode's forward voltage, compared to $\mathrm{V}_{\text {BUCKIN }}$ and $\mathrm{V}_{\text {LED }}$, we have:

$$
\begin{gathered}
D=\frac{V_{\text {LED }}}{V_{\text {BUCKIN }}} \\
F_{\text {SW }}=\frac{1-\frac{V_{\text {LED }}}{V_{\text {BUCKIN }}}}{T_{\text {OFF }}}=\frac{V_{\text {LED }} \cdot\left(1-\frac{V_{\text {LED }}}{V_{\text {BUCKIN }}}\right)}{V_{\text {LED }} \cdot T_{\text {OFF }}}
\end{gathered}
$$

For a given application (given inductance and $\mathrm{V}_{\mathrm{LED}}$), it is possible to set $\mathrm{I}_{\text {LEDx_AVG }}$ by selecting different combinations of $\mathrm{L}_{\text {Lx_PEAK }}$ and $\mathrm{V}_{\text {LED }} X \mathrm{~T}_{\text {OFF }}$ in order to avoid critical frequency ranges such as the AM radio band.

To avoid buck operation at not allowed $T_{\text {ON }}$ and/or $T_{\text {OFF }}$ times, frequency range has to be kept inside $F_{S W \text { min }}$ and $F_{S W \max }$, where:
$F_{\text {SWmin }}=1 /($ TON_MAX_BUCK + TOFF_MAX_BUCK $)$
$F_{\text {SWmax }}=1 /($ TON_MIN_BUCK + TOFF_MIN_BUCK $)$

3 Functional description

3.1 Operating modes

Figure 7. Device state diagram

3.1.1 Standby mode

The pre-requisite for this mode is:

- Device in Pre-Standby mode.

The device enters Standby mode under the following conditions:

- By default, once the device is powered (VS present);
- CSN High and DIN Low for more than $\mathrm{t}_{\text {STDBY }}$

The Standby mode characteristics are:

- V3V3 < VPOR
- $\quad \mathrm{V}_{\mathrm{SPI}}$ and V_{S} low consumption
- SPI inactive

The device leaves this mode if:

- DIN High or CSN Low for a time $t>t_{\text {WAKEUP }}$

Note: $\quad V_{s}$ must be stable above minimum value specified (5.5 V) before rising edge on DIN or falling edge on CSN.

3.1.2 Pre-standby mode

The device enters Pre-standby mode under the following conditions:

- upon the two following consecutive SPI frames setting:
- UNLOCK = 1
$-\quad(E N, G O S T B Y)=(0,1)$
The Pre-standby mode characteristics are:
- V3V3 > VPOR
- Bucks disabled
- SPI active

The device leaves automatically Pre-standby mode entering standby:

- if CSN High and DIN Low for a time $t>t_{\text {STDBY }}$

3.1.3 Reset mode

The device enters Reset mode under the following conditions:

- By default, once the device leaves Standby mode;
- If device state is Active mode, when one of the following events occur:
- $\quad \mathrm{V}_{\text {SPI }}$ under voltage;
- Watchdog failure
- One SPI frame setting $(E N, G O S T B Y)=(0,0)$
- Two consecutive SPI frames setting

UNLOCK = 1
$(E N, G O S T B Y)=(1,1)$
The Reset mode characteristics are:

- \quad V3V3 > VPOR
- All the control and status registers set to their default values
- SPI inactive

The device leaves automatically Reset mode and enters Limp home after 400 ns (typical).

3.1.4 Limp home

The device enters Limp Home automatically 400 ns after Reset mode.
Limp home characteristics are:

- Direct Input access enabled
- Buck1 according DIN
- Buck2 OFF
- SPI active:
- All SPI write operations must be allowed without any effects on the device behavior.

When the device leaves this mode, it can enter Standby or Active mode.

If the microcontroller sends to the device the following SPI frames sequence:

- \quad The first SPI frame sets UNLOCK bit = 1 (see bit <1> on Table 13: CR\#1: Control Register 1)
- The second consecutive SPI frame sets GOSTBY bit $=1$ and EN bit $=0$ (see bit <3> and bit <2> on Table 14: CR\#2: Control Register 2)

The device enters Standby mode.
If the microcontroller sends to the device the sequence of the following SPI frames:

- \quad The first SPI frame sets UNLOCK bit = 1; (see bit <1> on Table 13: CR\#1: Control Register 1)
- The second consecutive SPI frame sets GOSTBY bit $=0$ and EN bit $=1$. (see bit <3> and bit <2> on Table 14: CR\#2: Control Register 2)
The device enters Active mode.
In Limp Home, after setting bit 27 on GSB (FE1, functional error bit), an auto restart procedure is implemented: every $t_{\text {AUTORESTART }}$, functional error bit eventually set is automatically cleared.

3.1.5 Active mode

The device enters the Active mode if the microcontroller sends the following SPI frames sequence:

- In a first SPI frame set the UNLOCK bit to 1 (see bit <1> on Table 13: CR\#1: Control Register 1)
- In a second frame, set EN bit to 1 and GOSTBY bit to "0" (see bit <2> and bit <3> on Table 14: CR\#2: Control Register 2)

Table 2. Operating modes

Operating mode	Entering conditions	Leaving condition	Characteristics
Standby mode	- By default, once powered on (VS present); - SPI active and micro sending following consecutive frames: UNLOCK = 1 $(E N, G O S T B Y)=(0,1)$	DIN = High for ${ }^{\text {twAKEUP }}$ and/or CSN = Low for $\mathrm{t}_{\text {WAKEUP }}$	- V3V3 < VPOR; - V_{S} and $V_{S P I}$ low consumption; - SPI inactive
Pre-standby mode	- Under the following conditions: Two following consecutive SPI frames setting: $\begin{aligned} & \text { UNLOCK = } 1 \\ & (\text { EN,GOSTBY })=(0,1) \end{aligned}$	CSN High and DIN Low for a time $\mathrm{t}>\mathrm{t}_{\text {STDBY }}$	- V3V3 > VPOR - Bucks disabled - SPI active
Reset mode	- By default, when device leaves Standby mode - Under following condition, when device is in Active mode: $\mathrm{V}_{\text {SPI }}$ Under voltage WD failure; One SPI frame setting (EN,GOSTBY) $=(0,0)$ Two consecutive SPI frames setting: UNLOCK = 1 $(E N, G O S T B Y)=(1,1)$	Automatic transition after 400 ns	- All registers reset to default values - V3V3>VPOR - SPI inactive

Table 2. Operating modes (continued)

Operating mode	Entering conditions	Leaving condition	Characteristics
Limp Home	400 ns after Reset mode	- SPI sequence to enter Active mode: UNLOCK = 1 $(E N, G O S T B Y)=(1,0)$ - SPI sequence to enter Standby mode: UNLOCK = 1 $(E N, G O S T B Y)=(0,1)$	- DIN access enabled: Buck1 is according to DIN; Buck2 is OFF - SPI active
Active mode	SPI sequence: - UNLOCK = 1 $-\mathrm{EN}=1$ and GOSTBY = 0	- $\mathrm{V}_{\text {SPI }}$ undervoltage - WD failure - SPI sequence to enter Standby mode: UNLOCK = 1 $(E N, G O S T B Y)=(0,1)$	- Buck converters are active - SPI is active

3.2 Programmable functions

3.2.1 Activation of the buck output

In Active mode, the activation of the Buck converters is performed according to the configuration of control register CR\#3<15:14> for Buck1 and CR\#3<13:12> for Buck2, as showed in the following table. See Table 15: CR\#3: Control Register 3.

Table 3. DIN pin Map for Buck1 and Buck2

CR\#3<15> or CR\#3<13>	CR\#3<14> or CR\#3<12>	Buck1 and Buck2 status
0	0	Buckx always OFF (default for Buck2)
0	1	Buckx attached to internal PWM generator
1	0	Buckx always ON
1	1	Buckx controlled by DIN Input (default for Buck1)

3.2.2 PWM dimming

The device allows modifying the brightness of the LEDs string simply managing the average current.

The PWM dimming could be achieved in two different ways:

- Through direct input, DIN
- With integrated PWM generator

Dimming with direct input

The signal applies to buck1, buck2 or both, depending on DIN mapping bit configuration (see bits <15:14> and bits <13:12> on Table 15: CR\#3: Control Register 3). If the control
registers are configured accordingly, one (or both) buck converter(s) are activated and directly controlled by DIN pin.
The default configuration is set in order to allow direct driving only for buck1, whilst buck2 is turned off. In case of limp home function, the default conditions are applied.

PWM control through DIN has to take into account the DIN filter time (tDIN_FT, $32 \mu \mathrm{~s}$ typical) on rising edge to properly set the desired duty cycle.

Dimming with integrated PWM generator

This function allows modifying the average current on the LEDs by means of a dedicated control register (see bits <23:14> and bits <13:4> on Table 13: CR\#1: Control Register 1).

This function must be activated setting the right mapping bits configuration inside the control register 3, and in particular, CR\#3<15:14> for Buck1 and CR\#3<13:12> for Buck2.

To set duty cycle, a 10-bit number must be written in the corresponding register, resulting in a 1024 steps of resolution. The duty cycle is determined through the following equation:

$$
D C_{\%}=\frac{N}{1024} \cdot 100
$$

Where N is the 10 -bit number.
The PWM frequency is depending on the PWM_CLK input signal with the following equation:

$$
\text { PWM_LF }=\frac{\text { PWM_CLK }}{1024}
$$

Where PWM_LF is the LEDs dimming frequency.
If PWM signal fails, an error bit is reported in the STATUS register where PWMCLK fail is located. An internal fallback oscillator is enabled in order to provide a fixed PWM frequency clock signal ($\mathrm{F}_{\text {FALLBACK_CLK }}$), whilst no changes is applied on the duty cycle.

Once the external PWM is available again and after a read \& clear operation on Status Register 2, the internal clock is disabled and PWM operation continues with the external clock (see Figure 12).

3.3 Protections

3.3.1 Temperature warning

The device integrates a temperature warning with two thresholds TW_{1} and TW_{2} in each buck's mosfet. If the T_{j} of the buck mosfet1 or buck mosfet2 rises above TW ${ }_{1}$ or TW_{2}, the status bit TWxy is set ($x=1$ or $x=2$, it stands for the buck1 or buck2, $y=1$ or $y=2$, it stands for the TW_{1} or TW_{2}). TW TXY bit is set on the status registers: SR\#1<4:3> for Buck1 and SR\#2<22:21> for Buck2. Thermal warning is also reported in the Global Status Byte register, and in particular, bit 25 (GW) is set.
If the T_{j} drops below the temperature warning reset threshold $1\left(\mathrm{TW}_{1}-\mathrm{TW}_{1 _H Y S}\right)$, respectively $\mathrm{TW}_{2}-\mathrm{TW}_{2}$ HYS, the corresponding status bit is automatically ${ }^{-}$reset.
As long as the Tj does not exceed the over temperature shutdown, the device does not latches off the buck mosfets, even if a temperature warning is detected.

3.3.2 Overtemperature shutdown

If the junction temperature of one of the buck mosfets rises above the shutdown temperature $T_{\text {TSD }}$, an overtemperature event (OVT) is detected. The channel is switched off and the corresponding bit (OVT1 or OVT2) is set in the status register SR\#1<5> for Buck1 and SR\#2<23> for Buck2.

Overtemperature events are also reported in the Global Status Byte register and in particular bit 27 FE1 is set.

In normal mode the corresponding buck converter is latched off, until the following conditions are fulfilled:

1. $\mathrm{T}_{J X}$ drops below the thermal shutdown reset threshold $\mathrm{T}_{\mathrm{TSD}}{ }^{-} \mathrm{T}_{\mathrm{TSD}}$ _HYS.
2. Subsequently the microcontroller sends a read and clear command, in order to reset OVT1 or OVT2 bit located in the Status register SR\#1<5> or SR\#2<23>.

In fail safe mode (Limp Home), the device applies an auto restart of the fault buck converter with a period equal to $t_{\text {AUTORESTART }}$, provided that the $T_{J X}$ falls below TSD reset threshold ($\mathrm{T}_{\mathrm{TSD}}{ }^{-\mathrm{T}_{\text {TSD_HYS }} \text {). }}$

3.3.3 VS under voltage lockout

If the VS supply falls below V_{S} UV (VS under voltage threshold), the buck converters will be deactivated, regardless of the SPI control registers or DIN.

This feature is implemented, in order to avoid any operation outside the allowed VS operating range.

3.3.4 Buck T_{ON} minimum operation

Buck minimum on time operation is detected when the corresponding failure counter counts N_Ton_min_fail switching cycles (also nonconsecutive), during which ILx_PEAK is reached between $T_{\text {BLANK_BUCK }}$ and $T_{\text {ON min_BUCK. In }}$ normal mode (Active mode), once minimum $\mathrm{T}_{\text {ON }}$ operation is validated, flag $\bar{T}_{\text {ON_MIN_OPx }}$ is set and the corresponding Buckx converter is latched off, until the microcontroller sends a frame and clears the corresponding status bit (SR\#1<2> and SR\#1<1>).

In fail safe mode (Limp Home), once a minimum T_{ON} violation is validated, the corresponding buck converter is latched off until automatically cleared by an auto-restart procedure, with a period equal to $t_{\text {AUTORESTART }}$.
The failure counter is not incremented during the startup phase ($T_{\text {STARTUP }}$). The failure counter is reset if Nton_min_fail_reset consecutive pulses are detected with T_{ON} longer than $\mathrm{T}_{\text {ON_MIN_BUCK }}$.

3.3.5 Buck output's short circuit to GND

A shorted buck output to GND is detected when LED string voltage ($\mathrm{V}_{\mathrm{LED}}$) is lower than a specified threshold ($\mathrm{V}_{\text {LED_SHT }}$) and the corresponding failure counter counts Nton_min_fail switching cycles (also nonconsecutive), during which I Lx_PEAK is reached between $T_{\text {BLANK_BUCK }}$ and TON_MIN_BUCK. In normal mode (Active mode), once a short circuit is $^{\text {I }}$ validated, flag SHTx is set and the corresponding Buckx converter is latched off, until the microcontroller sends a frame and clears the corresponding status bit (SR\#1<7> and SR\#1<6>).

In fail safe mode (Limp Home), once a short circuit is validated, the corresponding buck converter is latched off until automatically cleared by an auto-restart procedure, with a period equal to $t_{\text {AUTORESTART }}$.

The failure counter is not incremented during the startup phase. The failure counter is reset if Nton_min_fail_reset consecutive pulses are detected with $T_{\text {ON }}$ longer than $T_{\text {ON_MIN_BUCK. }}$

3.3.6 Buck T_{ON} maximum operation

Buck maximum on time operation is detected when switching on time is equal to ton_MAX_BUCK for two consecutive cycles.

Once maximum Ton operation is validated, flag TON_MAX_OPx is set and the corresponding Buckx converter is temporarily switched off for a Ttonmax_off.
Then, Buckx is enabled to switch on again while TON_MAX_OPx bit will be latched until a R\&C command clears corresponding status bit (SR\#2<20> or SR\#2<19>).

In fail safe mode (Limp Home), once a maximum T_{ON} violation is validated, the corresponding buck converter is latched off until automatically cleared by an auto-restart procedure, with a period equal to $t_{\text {AUTORESTART }}$.

3.3.7 Buck Open Load detection

If one of the LED strings is disconnected, the converter will charge the output capacitor of the buck converter by regulating the peak current of the switch, until $\mathrm{V}_{\mathrm{LED}}$ is equal to the buck input voltage. From this point, since the output capacitor is charged at the maximum possible value, it cannot absorb any current despite the activation of the switch, and the target $I_{\text {Lx_PEAK }}$ cannot be reached.

Upon these conditions, Buckx starts switching at maximum Ton: maximum Ton operation detection (described in Section 3.3.6) guarantees Open Load failure protection as well.

4 SPI functional description

4.1 SPI protocol

ST-SPI is a standard used in ST automotive ASSP devices. SPI protocol standardization here described defines a common structure of the communication frames and defines specific addresses for product and status information.

The ST-SPI will allow usage of generic software to operate the devices while maintaining the required flexibility to adapt it to the individual functionality of a particular product. In addition to that, fail safe mechanisms are implemented to protect the communication from external influence and wrong or unwanted usage.

4.2 SPI communication

At the beginning of each communication the master can read the content of the <SPI Mode> register (ROM address 10h) of the slave device. This 8 bit register indicates the SPI frame length (32 bit) and the availability of additional features.
Each communication frame consists of a command byte which is followed by 3 data bytes.
The data returned on SDO within the same frame always starts with the <Global Status Byte>. It provides general status information about the device. It is followed by 3 data bytes (i.e. "in-frame-response").

For write cycles the <Global Status Byte> is followed by the previous content of the addressed register.

Table 4. Command byte (8 bit)

	Operating code		Address					
Bit	31	30	29	28	27	26	25	24
Name	OC1	OC0	A5	A4	A3	A2	A1	A0

Table 5. Data byte 2

	Data byte 2								
Bit	23	22	21	20	19	18	17	16	
Name	D23	D22	D21	D20	D19	D18	D17	D16	

Table 6. Data byte 1

	Data byte 1								
Bit	15	14	13	12	11	10	9	8	
Name	D 15	D 14	D 13	D 12	D 11	D 10	D 9	D 8	

Table 7. Data byte 0

	Data byte 0								
Bit	7	6	5	4	3	2	1	0	
Name	D7	D6	D5	D4	D3	D2	D1	D0	

Where:

OCx: Operation Code
Ax : Address
Dx: Data bit

Command Byte

Each communication frame starts with a command byte. It consists of an operating code which specifies the type of operation (<Read>, <Write>, <Read and Clear>, <Read Device Information>) and a 6 bit address.

Table 8. Operation code definition

OC1	OCO	Meaning
0	0	<Write Mode>
0	1	<Read Mode>
1	0	<Read and Clear Mode>
1	1	<Read Device Information>

The <Write Mode> and <Read Mode> operations allow access to the RAM of the device.
A <Read and Clear Mode> operation is used to read a status register and subsequently clears its content.

The <Read Device Information> allows access to the ROM area which contains device related information.

Global Status Byte

According to the ST SPI 4.1 standard, the first byte on the SDO pad during each command reports the global status of the chip:

Table 9. Global Status Byte

	Global Status Byte							
Bit	31	30	29	28	27	26	25	24
Name	GSBN	RSTB	SPIE	FE2	FE1	DE	GW	FS

Table 10. Global Status Byte description

Bit	Name	Description
31	GSBN	Global Status Bit Not This bit is a NOR combination of the remaining bits of this register: RSTB nor SPIE nor FE2 nor FE1 nor DE nor GW nor FS
30	RSTB	Reset Bit The RSTB indicates a device reset. In case this bit is set, all internal Control Registers are set to default and kept in that state until the bit is automatically cleared by any valid SPI communication.
29	SPIE	SPI Error The SPIE is a logical OR combination of errors related to a wrong SPI communication (SDI stuck, wrong number of clock, parity check error)
27	FE2	Functional Error 2 (logic OR combination of errors which does not cause parts of the device to be disabled) TOFF1_MAX or TOFF2_MAX or TOFF1_MIN or TOFF2_MIN or TON_MAX_OP1 or TON_MAX_OP2
26	DE	Functional Error 1 (logic OR combination of critical errors which cause parts of the device to be disabled) VS_UV or OL1 or OL2 or OVT1 or OVT2 or SHT1 or SHT2 ot TON_MIN_OP1 or TON_MIN_OP2.
25	GW	Device error PWMCLK_FAIL.
24	FS	Global warning TW11 or TW12 or TW21 or TW22
Fail safe If this bit is set, the device is in limp home mode		

4.3 Address mapping

Table 11. RAM memory map

Address	Name	Access	Content
01 h	Control Register 1	R/W	CR\#1: $1^{\text {st }}$ Control Register
02 h	Control Register 2	R/W	CR\#2: $2^{\text {nd }}$ Control Register
03 h	Control Register 3	R/W	CR\#3: $3^{\text {rd }}$ Control Register
04 h	Control Register 4	R/W	CR\#4: $4^{\text {th }}$ Control Register
05 h	Status Register 1	R/C	SR\#1: $1^{\text {st }}$ Status Register
06 h	Status Register 2	R/C	SR\#2: $2^{\text {nd }}$ Status Register
07 h	Status Register 3	R/C	SR\#3: $3^{\text {rd }}$ Status Register

Table 11. RAM memory map (continued)

Address	Name	Access	Content
3Eh	Customer Trimming Register	R/W (W only when EOT bit = 0)	CT: Customer Trimming Register
3Fh	Advanced Operation Code	Clear	A R\&C operation to this address causes all status registers to be cleared

Table 12. ROM memory map

Address	Name	Access	Content	Comments
00h	Company Code	R	00h	STMicroelectronics
01h	Device family	R	02h	LED product family
02h	Device number 1	R	55h	'U' in ASCII
03h	Device number 2	R	41h	'A' in ASCII
04h	Device number 3	R	52h	'R' in ASCII
05h	Device number 4	R	07h	'7' in hex
0Ah	Silicon version	R	04h	Fifth version
10h	SPI Mode	R	31h	Bit7 $=0$, burst read is disabled SPI data length $=32$ bits Bit6, DL2 = 0 Bit5, DL1 = 1 Bit4, DLO = 1 Bit3, SPI8 = 0: 8 bit frame option not available Bit2 $=0$ Parity check is used Bit1, S1=0 Bit0, $S 0=1$
11h	WD Type 1	R	4Ah	A WD is implemented Bit7, WD1 = 0 Bit6, WD0 = 1 WD period $50 \mathrm{~ms}=10$ * $5 \mathrm{~ms}->\mathrm{WT}[5: 0]=0 \times A$ Bit5, WT5 = 0 Bit4, WT4 = 0 Bit3, W T3 $=1$ Bit2, WT2 = 0 Bit1, WT1 = 1 Bit0, WTO = 0
13h	WD bit pos. 1	R	44h	$\begin{aligned} & \text { Bit7, WB1 }=0 \\ & \text { Bit6, WB2 }=1 \\ & \text { WBA[5-0], Bit[5-0] = address of the configuration } \\ & \text { register, where the WD bit is located }=04 \mathrm{~d}= \\ & 000100 \mathrm{~b} \end{aligned}$

Table 12. ROM memory map (continued)

Address	Name	Access	Content	Comments
14 h	WD bit pos. 2	R	D7h	Bit7, WB1 = 1 Bit6, WB0 = 1 Bit position of the WD bit within the corresponding configuration register $=23 \mathrm{~d}=$ 010111 b
20h	SPI CPHA Test	R	55 h	Predefined by ST - SPI , it is used to verify that the SCK Phase of the SPI master is set correctly
3Eh	GSB Options	R	00 h	All bits of GSB are used
3Fh	Advanced Operation Code	R	00 h	Access to this address provokes a SW reset (all control registers are set to their default values; in addition, all status registers are cleared too). Data field should not be all ones, otherwise an SDI stuck occurs

4.4 Registers description

4.4.1 Control Register description

CR\#1: Control Register 1

Address: $0 \times 01 \mathrm{~h}$
Type: R/W
Table 13. CR\#1: Control Register 1

Bit	Default	Name	Description
$23 \div 14$	1000000000	DUTY1	10 bit PWM duty cycle selection for Buck1 (from 0 to hex 3FF) Default 50\%
$13 \div 4$	1000000000	DUTY2	10 bit PWM duty cycle selection for Buck2 (from 0 to hex 3FF) Default 50\%
3	Set by OTP (DEF_HLEDCUR)	HLEDCUR1	[1]: High LED current configuration selected for Buck1 (Low RON, both half power stages enabled) [0]: Low LED current configuration selected for Buck1 (High RON, only one half power stage enabled)
2		HLEDCUR2	[1]: High LED current configuration selected for Buck2 (Low RON, both half power stages enabled) [0]: Low LED current configuration selected for Buck2 (High RON, only one half power stage enabled)

Table 13. CR\#1: Control Register 1 (continued)

Bit	Default	Name	Description
1	0	UNLOCK	[0]: bits GOSTBY, EN and BST_DIS cannot be set to 1 [1]: bits GOSTBY, EN and BST_DIS can be set to 1 with the next SPI frame If UNLOCK = 1, then it is always automatically reset with the next valid SPI frame
0		Parity bit	ODD parity bit check

CR\#2: Control Register 2

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		IL1_PEAK						IL2_PEAK					VLED_TOFF1				VLED_TOFF2			خ	EN		䓂

Address: 0x02h
Type: R/W
Table 14. CR\#2: Control Register 2

Bit	Default	Name	Description
$23 \div 18$	Set by OTP (see Table 27)	IL1_PEAK	Inductor Peak Current selection bits for Buck1
17:12	100000	IL2_PEAK	Inductor Peak Current selection bits for Buck2
$11 \div 8$	Set by OTP (see Table 28)	VLED_TOFF1	Constant VLEDxTOFF Selection bits for Buck1: 0000: $10 \mathrm{~V}^{*} \mu \mathrm{~s}$; 1111: $72 \mathrm{~V}^{*} \mu \mathrm{~s}$; see Table 17
$7 \div 4$	1111	VLED_TOFF2	Constant VLEDxTOFF Selection bits for Buck2: 0000: $10 \mathrm{~V}^{*} \mu \mathrm{~s}$; 1111: $72 \mathrm{~V}^{*} \mu \mathrm{~s}$; see Table 17
3	0	GOSTBY	Standby Mode Bit: 0: Device waked up 1: Standby (if $\mathrm{EN}=0$) GOSTBY can be set to 1 only if UNLOCK $=1$; in other words, trying to set this bit to 1 when UNLOCK $=0$ will have no effects and it will maintain its previous value. GOSTBY can be reset to 0 also when UNLOCK $=0$. To set Standby mode it is necessary to send two consecutive SPI frames, as follows: $1^{\text {st }}$ SPI write operation to set UNLOCK bit to 1 (CR\#1, bit1) $2^{\text {nd }}$ SPI write operation to set GOSTBY bit to 1 and EN bit to 0

Table 14. CR\#2: Control Register 2 (continued)

Bit	Default	Name	Description
2	0	EN	Active mode Enable Bit: 0 : Device stays in Limp Home (if GOSTBY = 0). This status is assumed immediately after a wake up (CSN low or DIN High for a time > twake_up) 1: Device Enabled for Active mode operation (if GOSTBY = 0). EN can be set to 1 only if UNLOCK = 1 ; in other words, trying to set this bit to 1 when UNLOCK $=0$ will have no effects and it will maintain its previous value. EN can be reset to 0 also when UNLOCK $=0$. To set Active mode it is necessary to send two consecutive SPI frames as follows: $1^{\text {st }}$ SPI write operation to set UNLOCK bit to 1 (CR\#1, bit1) $2^{\text {nd }}$ SPI write operation to set GOSTBY bit to 0 and EN bit to 1
1	0	Reserved	This bit must be set to 1
0		Parity bit	ODD parity bit check

CR\#3: Control Register 3

Table 15. CR\#3: Control Register 3

Bit	Default	Name	Description
$23 \div 20$	0000	PH1	4 bit phase selection for Buck1: Phase shift = PH1 * 360 / 16
$19 \div 16$	0000	PH2	4 bit phase selection for Buck2: Phase shift = PH1 * 360 / 16
$15 \div 14$	11	DIN_MAP1	Buck1 DIN map (see Table 18)
$13 \div 12$	00	DIN_MAP2	Buck2 DIN map (see Table 18)
$11 \div 7$	11011	Reserved	
6	0	PWM_SYNC	PWMSYNC: : PWM Counter not reset; $1: ~ P W M ~ C o u n t e r ~ R e s e t ~(n o t e ~ t h a t ~ t h i s ~ b i t ~ i s ~ a u t o m a t i c a l l y ~ r e s e t ~ a f t e r ~$ counter reset) $5 \div 4$$\quad 00$
B_IN_W1	Buck Input Voltage Window for Buck1 (see Table 19)		

Table 15. CR\#3: Control Register 3 (continued)

Bit	Default	Name	Description
$3 \div 2$	00	B_IN_W2	Buck Input Voltage Window for Buck2 (see Table 19)
1	1	Reserved	This bit must be set to 1
0		Parity bit	ODD parity bit check

CR\#4: Control Register 4

Address: $0 \times 04 \mathrm{~h}$
Type: R/W
Table 16. CR\#4: Control Register 4

Bit	Default	Name	Description
23	0	WD_TRIG	In order to keep device in Active mode, this bit must be cyclically toggled within a period equal to twD to refresh the watchdog.
$22 \div 21$	00	Reserved	Note: when writing on this register, bit 21 and 22 must be set to 00
$20 \div 1$		Unused	
0		Parity bit	ODD parity bit check

Table 17. Constant VLED x TOFF selection

VLED_TOFF	Constant VLED \mathbf{x} TOFF $\mathbf{[V \mathbf { x } \boldsymbol { \mu s }]}$
0000	10
0001	12
0010	14
0011	16
0100	18
0101	20
0110	22
0111	24
1000	28
1001	32
1010	36
1011	40
1100	48

Table 17. Constant VLED x TOFF selection (continued)

VLED_TOFF	Constant VLED \mathbf{x} TOFF $[\mathbf{V} \mathbf{x} \boldsymbol{\mu s}]$
1101	56
1110	64
1111	72

Table 18. DIN map table for Buck Cell X

DIN_MAP X	Status of Buck Cell X
00	Always OFF
01	PWM dimming
10	Always ON
11	Controlled by DIN

Table 19. Buck input voltage window

B_IN_W	Buck In voltage range [V]
00	$10 \div 25$
01	$25 \div 40$
10	$40 \div 50$
11	$50 \div 60$

4.4.2 Status Register description

SR\#1: Status Register 1

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			VLED	ON							VLED	,ON				돋	$\stackrel{\text { N }}{\text { N }}$	$\stackrel{F}{5}$	\sum_{\gtrless}^{N}	$\underset{\lessgtr}{\Sigma}$			苟
R/C																			R		R/C		

Address: 0x05h
Type: \quad R, R/C
Table 20. SR\#1: Status Register 1

Bit	Default	Name	Description	Access
$23 \div 16$	00000000	VLED1,ON	ADC conversion related to VLED1 (ranging from 0 V to 52.5 V), sampled during on time of Buck1. Note that in case of Buck1 controlled by DIN pin or by SPI, the ADC is continuously refreshed during on-state, while, if controlled by internal PWM dimming generator, ADC refresh occurs only once per period just before the end of each PWM on-cycle.	R/C
$15 \div 8$	00000000	VLED2,ON	ADC conversion related to VLED2 (ranging from 0 V to 52.5V), sampled during on time of Buck2. Note that in case of Buck2 controlled by DIN pin or by SPI, the ADC is continuously refreshed during on-state, while, if controlled by internal PWM dimming generator, ADC refresh occurs only once per period just before the end of each PWM on-cycle.	R/C
7	0	SHT1	VLED1 short circuit detection. This bit is set when TON_MIN_OP1 is set too but only if, at the same instant, average VLED1 voltage is lower than 1.5V. When SHT1 = 1, Buck1 is disabled until a read and clear command of this bit has been acknowledged. In LHM, an auto restart procedure cyclically clears this bit with a period equal to taUTORESTART	R/C
6	0	SHT2	VLED2 short circuit detection. This bit is set when TON_MIN_OP2 is set too but only if, at the same instant, average VLED2 voltage is lower than 1.5V. When SHT2 = 1, Buck2 is disabled until a read and clear command of this bit has been acknowledged.	R/C

Table 20. SR\#1: Status Register 1 (continued)

Bit	Default	Name	Description	Access
5	0	OVT1	Overtemperature for Buck1 (set when $\mathrm{T}_{\mathrm{j}} \geq \mathrm{T}_{\mathrm{TSD}}$ for more than $\mathrm{t}_{\mathrm{OVT}}$); If this bit is set: - in Active mode: Buck1 is latched OFF; reset is performed by a R\&C command, which will be successful only if $\mathrm{T}_{\mathrm{j}}<\mathrm{T}_{\text {TSD }}-$ $\mathrm{T}_{\text {TSD_HYS }}\left(\operatorname{typ} 140^{\circ} \mathrm{C}\right.$). Then Buck1 is allowed to turn on again. - in LHM, after setting an OVT1, an auto restart procedure is implemented: every $\mathrm{t}_{\text {AUTORESTART }}$ OVT1 bit is automatically cleared and, if $\mathrm{T}_{\mathrm{j}}<\mathrm{T}_{\text {TSD }}-\mathrm{T}_{\text {TSD_HYS }}$, then Buck1 is allowed to turn on again, otherwise OVT1 bit is set again.	R/C
4	0	TW12	Thermal warning 2 for Buck1. This bit is set if $T_{j} \geq T W_{2}$. This is a read only and real time bit. When Buck1 temperature decreases under a second threshold ($\mathrm{T}_{\mathrm{j}}<\mathrm{TW}_{2}$. TW_{2} _HYS), this bit is cleared.	R
3	0	TW11	Thermal warning 1 for Buck1. This bit is set if $\mathrm{T}_{\mathrm{j}} \geq \mathrm{TW}_{1}$ This is a read only and real time bit. When Buck1 temperature decreases under a second threshold (TW_{1} _ $\mathrm{TW}_{1 _ \text {HYS }}$), this bit is cleared.	R
2	0	TON_MIN_OP1	Operation at minimum on-time for Buck1. This bit is set when Buck1 runs at an on-time shorter than ton_MIN_BUCK for more than 32 (even not consecutive) cycles. When TON_MIN_OP1 = 1, Buck1 is disabled until a read and clear command of this bit has been acknowledged. In LHM, an auto restart procedure cyclically clears this bit with a period equal to $\mathrm{t}_{\text {AUTORESTART }}$.	R/C
1	0	TON_MIN_OP2	Operation at minimum on-time for Buck2. This bit is set when Buck2 runs at an on-time shorter than ton_min_buck for more than 32 (even not consecutive) cycles. When TON_MIN_OP2 = 1, Buck2 is disabled until a read and clear command of this bit has been acknowledged.	R/C
0		Parity Bit	ODD parity bit check	

SR\#2: Status Register 2

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9		7	6	5	4	$3 \quad 2$	1	0
$\stackrel{N}{5}$	$\underset{\underset{\sim}{N}}{N}$	$\stackrel{\Gamma}{\underset{\gtrless}{\Sigma}}$		$\begin{aligned} & \hline N \\ & \tilde{N}_{1} \\ & x_{1}^{\prime} \\ & \Sigma_{1}^{\prime} \\ & z_{0} \end{aligned}$			$$			$\begin{aligned} & 3 \\ & \Omega_{1}^{\prime} \end{aligned}$						Reserved		$\begin{aligned} & \text { ¢ } \\ & z_{1} \end{aligned}$		Unused		\#
R/C		R	R/C				R		R/C	R						-		R				

Address: 0x06h
Type: R, R/C
Table 21. SR\#2: Status Register 2

Bit	Default	Name	Description	Access
23	0	OVT2	Overtemperature for Buck2 (set when $T_{j} \geq T_{\text {TSD }}$ for more than tovt); if this bit is set Buck2 is latched OFF; reset is performed by a R\&C command, which will be successful only if $\mathrm{T}_{\mathrm{j}}<\mathrm{T}_{\text {TSD }}-\mathrm{T}_{\text {TSD_HYS. }}$. Then Buck2 is allowed to turn on again.	R/C
22	0	TW22	Thermal warning 2 for Buck2. This bit is set if $T_{j} \geq T W_{2}$. This is a read only and real time bit. When Buck2 temperature decreases under a second threshold ($\mathrm{T}_{\mathrm{j}}<\mathrm{TW}_{2}$ - TW_{2} _HYS), this bit is cleared.	R
21	0	TW21	Thermal warning 1 for Buck2. This bit is set if $\mathrm{T}_{\mathrm{j}} \geq \mathrm{TW}_{1}$. This is a read only and real time bit. When Buck2 temperature decreases under a second threshold (TW_{1} _ TW_{1} _HYS), this bit is cleared.	R
20	0	TON_MAX_OP1	Operation at maximum on-time for Buck1. This bit is set when Buck1 runs at an on-time equal to ton_MAX_BUCK for two consecutive cycles. Every time this event occurs, Buck1 is temporarily switched off for a t $\mathrm{t}_{\text {TON }}$ MAX OFF time, then is enabled to switch on again. Instead, TON_MAX_OP1 bit will be latched until a R\&C. In LHM, an auto restart procedure cyclically clears this bit with a period equal to tautorestart. $^{\text {a }}$	R/C
19	0	TON_MAX_OP2	Operation at maximum on-time for Buck2. This bit is set when Buck2 runs at an on-time equal to ton_MAX_BUCK for two consecutive cycles. Every time this event occurs, Buck2 is temporarily switched off for a $\mathrm{t}_{\text {TON MAX OFF }}$ time, then is enabled to switch on again. Instead, TON_MAX_OP2 bit will be latched until a R\&C.	R/C

Table 21. SR\#2: Status Register 2 (continued)

Bit	Default	Name	Description	Access
18	0	PWMCLK_FAIL	When this bit is set, a PWM Clock Fail is detected. This occurs $\mathrm{F}_{\text {PWMCLK }} \leq \mathrm{F}_{\text {PWMCLK_FAIL }}$. In this case PWMCLK signal is bypassed by an internal fall back PWM frequency clock (having a frequency equal to $\mathrm{F}_{\text {FALLBACK_CLK }}$). PWMCLK normal operation will be restored after a R\&C operation, when PWMCLK frequency $\mathrm{F}_{\text {PWMCLK }}>\mathrm{F}_{\text {PWMCLK_FAIL }}$.	R/C
17	0	VSPI_FAIL	VSPI failure bit 0: VSPI (external SPI Supply) present 1: VSPI not present (VSPI voltage lower than $\mathrm{V}_{\text {SPI_UV }}$): device goes to Limp Home Mode	R
16:15	00	WD_STATUS	Watchdog status bit: see Table 23	R
14	0	WD_FAIL	Watchdog failure bit: 0 : watchdog OK; 1: watchdog failure in Active mode When this bit is set, the device goes in Limp Home Mode	R/C
13	0	VS_UV	VS undervoltage bit $\begin{aligned} & 0: \mathrm{VS}>\mathrm{V}_{\text {S_UV }} \\ & 1: \mathrm{VS} \leq \mathrm{V}_{\mathrm{S}} \mathrm{UV} \end{aligned}$	R
12	0	TOFF_MIN1	Minimum off-time operation for Buck1 0 : Off-time \geq toff_MIN_BUCK 1: Off-time < toff_MIN_BUCK	R
11	0	TOFF_MIN2	Minimum off-time operation for Buck2 0 : Off-time \geq tOFF_MIN_BUCK 1: Off-time < toff_MIN_BUCK	R
10	0	TOFF_MAX1	Maximum off-time operation for Buck1: 0: Off-time < toff_MAX_BUCK 1: Off-time \geq toff_MAX_BUCK	R
9	0	TOFF_MAX2	Maximum off-time operation for Buck2: 0: Off-time < toff_MAX_BUCK 1: Off-time \geq toff_MAX_BUCK	R
$8 \div 6$	000	Reserved		
5	0	DIN_ST	Direct input status bit. Filtered replica of logical level at DIN pin. Filtering time is equal to $\mathrm{t}_{\mathrm{DIN}} \mathrm{ST}$.	R
$4 \div 1$	0000	Unused		
0		Parity Bit	ODD Parity Bit Check	

SR\#3: Status Register 3

Address: 0x07h
Type: R/C
Table 22. SR\#3: Status Register 3

Bit	Default	Name	Description	Access
$23 \div 16$	00000000	VLED1,OFF	ADC conversion related to VLED1 (rangin g from 0 V to 52.5 V), sampled during off-time of Buck1. Note that in case of Buck1 controlled by DIN pin or by SPI, the ADC is continuously refreshed during off-state, while, if controlled by internal PWM dimming generator, ADC refresh occurs only once per period just before the end of each PWM off-cycle.	R/C
$15 \div 8$	00000000	VLED2,OFF	VLD ADC that in case of Buck1 controlled by DIN pin or by SPI, the ADC is continuously refreshed during off-state, while, if controlled by internal PWM dimming generator, ADC refresh occurs only once per period just before the end of each PWM off-cycle.	R/C
$7 \div 1$	0000000	Unused		
0		Parity Bit	ODD Parity Bit Check	

Table 23. Watchdog status

WD_STATUS	WD timer status
00	$[0 \ldots 24 \%]$
01	$[24 \% \ldots 50 \%]$
10	$[50 \% \ldots 74 \%]$
11	$[74 \% \ldots 100 \%]$

4.4.3 Customer test and trimming registers description

CT: Customer Trimming Register

$23 \quad 22$	21	20	19	18	17	16		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											$\stackrel{\llcorner }{\mathrm{O}}$						ser						苞

Address:
Type:

0x3Eh
R/W
Write operation allowed only when CTM_TRIM_COD $=100$ and EOT $=0$

Table 24. CT: Ctm Trimming Register

Bit	Default	Name	Comment
$23 \div 21$	000	CTM_TRIM_COD	Operation Code for Trimming Operation: 011: Execute blank check read 100: Execute selected bit burning 010: Execute margin mode read 011: Execute blank check read 111: Execute end of trimming 001: Execute standard read
$20 \div 19$	00	DEF_HLEDCUR	
$18 \div 17$	00	DEF_DAC1	
$16 \div 15$	00	DEF_VLEDTOFF1	
14	0	Reserved	
13	1		
12	0	EOT	End of Ctm Trimming
$11 \div 1$	0000000000	-	Reserved
0		Parity Bit	ODD Parity Bit Check

4.4.4 Customer test and trimming procedure description

General description

The writing procedure is performed connecting the two terminals of the anti-fuse capacitor at 15 V and ground respectively. This is achieved by providing 15 V on VS battery pin.

After this phase, the capacitor is burnt and behaves like a resistance; its value (the residual resistance) strictly depends on the effectiveness of the burning procedure. During physical reading operation, the residual resistance is compared with a fixed threshold. If the residual resistance is greater than threshold a bit 0 is given, and the OTP cell is considered unwritten, otherwise a bit 1 is given and the OTP cell is considered written.

Blank check reading is executed to verify that all anti-fuses are unwritten after fabrication, while margin mode, usually performed immediately after the burning process, is used to verify if burned cells are properly written. Executing a blank-check reading after all writing operations have been completed allows verifying that unwritten cells haven't been degraded by burning processes.

Recommended test flow

In Figure 8 and in Table 26 the recommended testing procedure is shown and described.
Testing procedure starts with a blank check read, to verify that all anti-fuse rows are unwritten. After this operation, it is possible to select the bits to be written and to start programming. Writing operation should be performed up to 3 times. At the end of programming, a reading procedure should be performed in Margin Mode.

At the end of the test, it is strongly recommended executing a blank-check read in order to verify that unwritten cells haven't been degraded.

Table 25 summarizes the writing test conditions.
Table 25. Writing test conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
VS	15 V supply			15		V
I HV	HV current during programming				28	mA
-	Temperature		-40	27	150	${ }^{\circ} \mathrm{C}$
-	External capacitance		2	5	10	nF

Note: An external capacitance must be applied between VS and GROUND pins.

Figure 8. Testing flow chart

Table 26. Testing procedure description

Step	Description	Action	SPI Frames (binary, unless otherwise specified)
Blank Check (load)	In this step, antifuses are compared with a higher resistance than the standard one - to be sure they are initially unburned. Their content is loaded into bits $(20 \div 13)$ of CTM register.	Send an SPI write to CTM	$\begin{gathered} 00111110011 \\ 000000000000000000000 \end{gathered}$
Blank Check (read)	During previous step, the result of Blank Check Read is loaded into bits $(20 \div 13)$ of CTM register. A read operation is required this result.	Send an SPI read for customer trimming register and analyze the SDO frame received from device	$\begin{gathered} 01111110000 \\ 000000000000000000001 \end{gathered}$
Blank Check (decision)	A decision must be taken, based on the previous result. If antifuses were damaged, device must be discarded, otherwise the flow can proceed.	If the answer to previous SPI read is different from xx0000xx, then device must be discarded	-
Select bits to write	Desired setting for default values of some control bits must be chosen. Let's assume that the chosen 8 bit word is: ctm, corresponding to the 8 bits of CTM from 20 to 13 (DEF_HLEDCUR + DEF_DAC1 + DEF_VLEDTOFF1 + DEF_MS + DEF_BSTDIS).	Select 8 bit word to write (ctmd)	-
Burn (X3)	In this step, selected word (i.e. ctmd) must be written in the OTPs. This step must be repeated three times. It it recommended to wait the completion of a burn operation before starting the following one. Time required to burn one word depends on the number of fuses to be burned and it is equal to: $2.85 \mu \mathrm{~s}+401 \mu \mathrm{~s}$ * <number of selected bits>	Prepare the right external setup (see Table 27, "Writing test conditions"). Send an SPI write to CTM. Selected word must be placed in bits ($20 \div 13$) of CTM. Last bit depends on odd parity check.	00111110100 [ctmd] $0000000000000 x$
End Of Trimming (X3)	In this step, end of trimming antifuse is burned. This step must be repeated three times. It it recommended to wait the completion of a burn operation before starting the following one. Time required to burn one bit is almost equal to: $404 \mu \mathrm{~s}$	Send an SPI write to CTM	$\begin{gathered} 00111110111 \\ 000000000000000000001 \end{gathered}$

Table 26. Testing procedure description (continued)

Step	Description	Action	SPI Frames (binary, unless otherwise specified)
Margin Mode (load)	In this step, antifuses are compared with a lower resistance than the standard one - to be sure selected bits are properly burned. Their content is loaded into CTM register.	Send an SPI write to CTM	$\begin{gathered} 00111110010 \\ 000000000000000000000 \end{gathered}$
Margin Mode (read)	During previous step, the result of MM Read is loaded into the most significant 16 bits of each corresponding trimming register. A read operation is required to read this result.	Send an SPI read for customer trimming register and analyze the SDO frame received from device	$\begin{gathered} 01111110000 \\ 000000000000000000001 \end{gathered}$
Margin Mode (decision)	A decision must be taken, based on the previous result. If antifuses were not correctly burned after three steps, then device must be discarded, otherwise the flow can proceed.	If the answer to SPI read operation is different from: xxxxxxxx [ctmd] 100000000000 x, then device must be discarded. Last bit depends on odd parity check.	-
Final Blank Check (load)	In this step, antifuses are compared with a higher resistance than the standard one - to be sure unselected bits are really unburned. Their content is loaded in CTM register.	Send an SPI write to CTM	$\begin{gathered} 00111110011 \\ 000000000000000000000 \end{gathered}$
Final Blank Check (read)	During previous step, the result of Blank Check Read is loaded into bits $(20 \div 13)$ of CTM register. A read operation is required for each of them to read this result.	Send an SPI read for customer trimming register and analyze the SDO frame received from device	$\begin{gathered} 01111110000 \\ 000000000000000000001 \end{gathered}$
Final Blank Check (decision)	A decision must be taken, based on the previous result. If antifuses were damaged, device must be discarded, otherwise the flow can proceed.	If the answer to SPI read operation operation is different from: $\mathbf{x x x x x x x x}$ [ctmd] 100000000000 \mathbf{x}, then device must be discarded. Last bit depends on odd parity check.	-

Table 27. Default peak current selection for Buck Cell 1

DEF_DAC1	DAC1 (default value)	$\mathbf{I}_{\text {L1_Peak }}[A]$ (HLEDCUR1 $=1)$	$\mathbf{I}_{\text {L1_Peak }}$ [A] (HLEDCUR1 $=0)$
00	100000	0.809	0.402
01	000000	0.362	0.179
10	110001	1.235	0.632
11	111111	1.695	0.849

Table 28. Default VLEDxTOFF Selection for Buck Cell 1

DEF_VLEDTOFF1	VLED_TOFF1
00	$1111\left(72 \mathrm{~V}^{*} \mu \mathrm{~s}\right)$
01	$1011\left(40 \mathrm{~V}^{*} \mu \mathrm{~s}\right)$
10	$0101\left(20 \mathrm{~V}^{*} \mu \mathrm{~s}\right)$
11	$0000\left(10 \mathrm{~V}^{*} \mu \mathrm{~s}\right)$

5 Electrical specifications

5.1 Absolute maximum ratings

Stressing the device above the rating listed in the Table 29 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 29. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{S}	Battery supply voltage	-0.3 to 40	V
$\mathrm{V}_{\text {SPI }}$	Supply voltage of the SPI interface	-0.3 to 6.5	V
$\mathrm{V}_{3} \mathrm{~V} 3$	3.3V Voltage Regulator Capacitor Output	-0.3 to 4.6	V
$\mathrm{V}_{\mathrm{CSN}}, \mathrm{V}_{\text {SDI, }} \mathrm{V}_{\text {SCK }}$	SPI pins voltage	-0.3 to 6.5	V
$\mathrm{V}_{\text {SDO }}$	SPI pin voltage	-0.3 to $\mathrm{V}_{\text {SPI }}+0.3$	V
$\mathrm{V}_{\text {CBOOT1 }}, \mathrm{V}_{\text {CBOOT2 }}$	Buck-related high voltage pins	-0.3 to 65	V
$\begin{aligned} & \mathrm{V}_{\mathrm{CBOOT1}}-\mathrm{V}_{\mathrm{LX} 1}, \\ & \mathrm{~V}_{\mathrm{CBOOT} 2}-\mathrm{V}_{\mathrm{LX} 2} \end{aligned}$	Buck MOSFET overdrive	-0.3 to 4.6	V
$\mathrm{V}_{\text {BUCKIN1 }}, \mathrm{V}_{\text {BUCKIN2 }}$, $\mathrm{V}_{\text {LED1 }}, \mathrm{V}_{\text {LED2 }}$	Buck input and output pins voltage	-0.3 to 62	V
$\mathrm{V}_{\mathrm{LX} 1}, \mathrm{~V}_{\mathrm{LX} 2}$	Buck switching node pins voltage	-1.0 to 62	V
$\mathrm{I}_{\mathrm{VLEDx}}$	$\mathrm{V}_{\text {LEDx }}$ pins maximum injected current	0.1	mA
$\mathrm{V}_{\text {DIN }}$	Direct input pin voltage	-0.3 to 6.5	V
$V_{\text {PWMCLK }}$	Clock input pin (for internal PWM dimming generator)	-0.3 to 6.5	V
T_{j}	Junction operating temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

5.2 ESD protection

Table 30. ESD protection

Parameter	Value	Unit
All pins ${ }^{(1)}$	± 2	kV
All output pins ${ }^{(2)}$	± 4	kV
All pins (Charge Device Model)	± 500	V
Corner pins (Charge Device Model)	± 750	V

1. HBM (human body model, $100 \mathrm{pF}, 1.5 \mathrm{k} \Omega$) according to MIL 883C, Method 3015.7 or EIA/JESD22A114-A.
2. HBM with all none zapped pins grounded, output pins are VS, DIN, VLED1, VLED2.

5.3 Thermal characteristics

Table 31. QFN40L 6x6 thermal resistance

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{R}_{\text {thj-amb }}{ }^{(1)}$	Thermal resistance junction to ambient (JEDEC JESD 51-2)	-	32	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-board }}$	Thermal resistance junction to board (JEDEC JESD 51-8)	-	11	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-case }}$	Junction-to-case thermal resistance	-	7.2	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. Device mounted on four layers 2 s 2 p PCB (thermally enhanced, slug included).

Table 32. Thermal characteristics

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{T}_{\text {J_OP }}$	Operating junction temperature	-40		150	${ }^{\circ} \mathrm{C}$
TW_{1}	Junction temperature warning 1	120	130	140	${ }^{\circ} \mathrm{C}$
$\mathrm{TW}_{1 _ \text {HYS }}$	Temperature warning 1 hysteresis		30		${ }^{\circ} \mathrm{C}$
TW_{2}	Junction temperature warning 2	130	140	150	${ }^{\circ} \mathrm{C}$
$\mathrm{TW}_{2 \text { _HYS }}$	Temperature warning 2 hysteresis		10		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {TSD }}$	Junction thermal shutdown	155	165	175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {TSD_HYS }}$	Junction thermal shutdown hysteresis		25		${ }^{\circ} \mathrm{C}$

5.4 Electrical characteristics

5.5 $\mathrm{V}<\mathrm{V}_{\mathrm{S}}<24 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{j}}<150^{\circ} \mathrm{C}$, unless otherwise specified.

The device is still operative and functional at higher temperatures (up to $175^{\circ} \mathrm{C}$).
Note: \quad Parameters limits at higher temperatures than $150^{\circ} \mathrm{C}$ may change respect to what is specified as per the standard temperature range.
Device functionality at high temperature is guaranteed by characterization.

5.4.1 Supply

Table 33. Supply

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {SPI }}$	Digital I/O supply voltage		3.0		5.5	V
$\mathrm{V}_{\text {SPI,UV }}$	$\mathrm{V}_{\text {SPI }}$ under voltage		2.0	2.5	3.0	V
$\mathrm{I}_{\text {SPI,STBY }}$	$\mathrm{V}_{\text {SPI }}$ standby current	Device in standby mode $\mathrm{V}_{\mathrm{SPI}}=5.0 \mathrm{~V}$		1	2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SPI,Q }}$	$\mathrm{V}_{\text {SPI }}$ quiescent current	Device operating $\mathrm{V}_{\mathrm{SPI}}=5.0 \mathrm{~V}$			3	mA
V_{S}	Operating V_{S} supply voltage		5.5		24	V
$\mathrm{V}_{\mathrm{S}, \mathrm{UV}, \mathrm{L}}$	V_{S} under voltage shutdown low limit	$\mathrm{V}_{\mathrm{SPI}}=5 \mathrm{~V}$; Ramp on VS from 5.5 V to 4.4 V	4.5		5	V
$\mathrm{V}_{\mathrm{S}, \mathrm{UV}, \mathrm{H}}$	V_{S} under voltage shutdown high limit	$\mathrm{V}_{\mathrm{SPI}}=5 \mathrm{~V}$; Ramp on VS from 4.4 V to 5.85 V		5.3	5.6	V
$\mathrm{V}_{\mathrm{S}, \mathrm{UV}, \mathrm{HYST}}$	V_{S} under voltage hysteresis			0.5		V
I_{s}	V_{S} operating current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=13.5 \mathrm{~V} ; \\ & \text { Buck1 and Buck2 ON; } \\ & \mathrm{V}_{\text {BUCKIN } 1}=\mathrm{V}_{\text {BUCKIN2 }}=25 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT1 }}=\mathrm{I}_{\text {OUT2 }}=250 \mathrm{~mA} \end{aligned}$		30		mA
$I_{\text {S, } Q}$	$\mathrm{V}_{\text {S }}$ quiescent current	$\mathrm{V}_{\mathrm{SPI}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=13.5 \mathrm{~V}$; Bucks disabled		7	16	mA
$\mathrm{I}_{\mathrm{S}, \mathrm{STBY}}$	V_{S} standby current	Device in standby mode; $\mathrm{V}_{\mathrm{S}}=13.5 \mathrm{~V}$		6	10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{POR}, \mathrm{H}}$	Power-on reset high state	Ramp on V3V3 from 3.3 V to 2 V	2.7	2.8	2.9	V
$\mathrm{V}_{\mathrm{POR}, \mathrm{L}}$	Power-on reset low state	Ramp on V3V3 from 2 V to 3.3 V	2.65	2.75	2.85	V
$\mathrm{V}_{\text {POR,HYST }}$	Power-on reset hysteresis			0.05		V
$\mathrm{V}_{3} \mathrm{~V} 3$	Output voltage of 3V3 LDO	$\mathrm{V}_{\mathrm{S}}=13 \mathrm{~V}, \mathrm{C}_{\text {out }}=220 \mathrm{nF}$	3.1	3.3	3.5	V

5.4.2 Buck

Table 34. Buck converter power stage

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$V_{\text {BUCKIN1 }}$ $V_{\text {BUCKIN2 }}$	Buck input voltage range		V_{S}		60	V
$I_{\text {Lx_PEAK }}$	Accuracy of the inductor peak current	Low RDSon Mode; $\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$	-4.5		4.5	\%
		Low RDSon Mode; $\mathrm{T}_{\mathrm{j}}<25^{\circ} \mathrm{C}$ DAC code ≥ 26	-6		6	\%
		High RDSon Mode; $\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$ DAC code ≥ 26	-4.5		4.5	\%
		High Rdson Mode; $\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$ DAC code < 26	-6		6	\%
		High Rdson Mode; $\mathrm{T}_{\mathrm{j}}<25^{\circ} \mathrm{C}$ DAC code ≥ 26				
V LED_SHT	Buck short circuit activation threshold	$\begin{aligned} & \text { Ramp on } \mathrm{V}_{\text {LEDx }} \text { from } 52.5 \mathrm{~V} \\ & \text { to } 0 \mathrm{~V} \end{aligned}$	1.2	1.7	2.2	V
$\mathrm{R}_{\text {DSON }}$	Buck MOSFET R ${ }_{\text {DSON }}$	High $\mathrm{R}_{\mathrm{DS} \text { on }}$ mode; $\mathrm{V}_{\text {BUCKINx }}=45 \mathrm{~V}$; IOUT $=350 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			800	$\mathrm{m} \Omega$
		Low R RS_ON mode; $\mathrm{V}_{\text {BUCKINx }}=45 \mathrm{~V}$; lout $=700 \mathrm{~mA}$; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			400	$\mathrm{m} \Omega$
$\mathrm{R}_{\text {DSON }}$	Buck MOSFET R ${ }_{\text {Dson }}$	High $R_{\text {Ds on }}$ mode; $\mathrm{V}_{\text {BUCKINx }}=45 \mathrm{~V}$; IOUT $=350 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$			1300	$\mathrm{m} \Omega$
		Low R RS_ON mode; $\mathrm{V}_{\text {BUCKINx }}=40 \mathrm{~V}$; $\mathrm{I}_{\text {OUT }}=700 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$			650	$\mathrm{m} \Omega$
$\left(\mathrm{dV} \mathrm{V}_{\mathrm{LX}} / \mathrm{dt}\right)_{\mathrm{ON}}$	LX Turn on voltage slope			2.4		V/ns
$(\mathrm{dV} \mathrm{LX} / \mathrm{dt})_{\text {OFF }}$	LX Turn off voltage slope			2.4		V/ns
$t_{\text {Blank Buck }}$	Buck Blanking Time			200		ns
${ }^{\text {tstartup }}$	Buck startup phase duration			400		$\mu \mathrm{s}$
N_ton_min_fail	Number of failure counter cycle			32		
N_ton_min_fail_reset	Reset of number of failure counter cycle			10		

Table 34. Buck converter power stage (continued)

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
${ }^{\text {t }}$ ONMAX_OFF	Buck off time after detection of two consecutive TON_MAX operation			64		$\mu \mathrm{s}$
$t_{\text {delay }}$	Time delay before to switch on Buckx (in limp home)			10		ms
tLOOP_DELAY_BUCK	Buck loop delay			190		ns
ton_MIN_BUCK	Operative Buck converter minimum on-time		400			ns
ton_MAX_BUCK	Operative Buck converter maximum on-time			20		$\mu \mathrm{s}$
toff_MIN_BUCK	Operative Buck converter minimum off-time		500			ns
toff_MAX_BUCK	Operative Buck converter maximum off-time			10		$\mu \mathrm{s}$
LLx_Peak	Inductor Peak Current Reference Range (see Table 35 and figures 9 and 10)	Low ILx PEAK current range; High R ${ }_{\text {DSON }}^{-}$mode	0.179		0.849	A
		High ILx_PEAK current range; Low R $\mathrm{RSON}^{\text {mode }}$	0.362		1.695	
VLED_RES	VLED input impedance			425		k Ω
ADC_RES	ADC resolution			8		bits
ADC_CONV_TIME	VLED1 ADC refresh time VLED2 ADC refresh time	Full conversion of 8 bits $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SPI}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LEDx}}=10 \mathrm{~V} \end{aligned}$		3.6		$\mu \mathrm{s}$
ADC_FS	ADC full scale for VLED measurement			52.5		V
ADC_INL	ADC Integral Non Linearity		-2		2	LSB
ADC_DNL	ADC Differential Non Linearity		-2		2	LSB

Note: \quad The values shown in the Table 35 are in accordance to the CR\#2<23:18> and CR\#2<17:12> configuration; see Section 4.4

Table 35. Inductor peak current selection
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { DAC } \\ \text { code }\end{array} & \begin{array}{c}\text { DAC } \\ \text { code 5 }\end{array} & \begin{array}{c}\text { DAC } \\ \text { code 4 }\end{array} & \begin{array}{c}\text { DAC } \\ \text { code 3 }\end{array} & \begin{array}{c}\text { DAC } \\ \text { code 2 }\end{array} & \begin{array}{c}\text { DAC } \\ \text { code 1 }\end{array} & \begin{array}{c}\text { DAC } \\ \text { code 0 }\end{array} & \begin{array}{c}\text { IL_PEAK [A] } \\ \text { Low RDSON }\end{array} & \text { IL_PEAK [A] } \\ \text { High RDSON }\end{array}\right]$

Table 35. Inductor peak current selection (continued)

$\begin{aligned} & \text { DAC } \\ & \text { code } \end{aligned}$	$\begin{gathered} \text { DAC } \\ \text { code } 5 \end{gathered}$	$\begin{gathered} \text { DAC } \\ \text { code } 4 \end{gathered}$	$\begin{gathered} \text { DAC } \\ \text { code } 3 \end{gathered}$	$\begin{aligned} & \text { DAC } \\ & \text { code } 2 \end{aligned}$	$\begin{gathered} \text { DAC } \\ \text { code } 1 \end{gathered}$	$\begin{gathered} \text { DAC } \\ \text { code } 0 \end{gathered}$	IL_PEAK [A] Low RDSON	IL_PEAK [A] High RDSON
32	1	0	0	0	0	0	0.809	0.402
33	1	0	0	0	0	1	0.831	0.413
34	1	0	0	0	1	0	0.853	0.424
35	1	0	0	0	1	1	0.877	0.436
36	1	0	0	1	0	0	0.9	0.447
37	1	0	0	1	0	1	0.924	0.46
38	1	0	0	1	1	0	0.938	0.471
39	1	0	0	1	1	1	0.963	0.483
40	1	0	1	0	0	0	0.987	0.496
41	1	0	1	0	0	1	1.013	0.509
42	1	0	1	0	1	0	1.039	0.521
43	1	0	1	0	1	1	1.066	0.535
44	1	0	1	1	0	0	1.093	0.549
45	1	0	1	1	0	1	1.12	0.562
46	1	0	1	1	1	0	1.148	0.576
47	1	0	1	1	1	1	1.177	0.59
48	1	1	0	0	0	0	1.205	0.605
49	1	1	0	0	0	1	1.235	0.62
50	1	1	0	0	1	0	1.265	0.635
51	1	1	0	0	1	1	1.295	0.65
52	1	1	0	1	0	0	1.326	0.665
53	1	1	0	1	0	1	1.357	0.681
54	1	1	0	1	1	0	1.389	0.696
55	1	1	0	1	1	1	1.421	0.713
56	1	1	1	0	0	0	1.453	0.729
57	1	1	1	0	0	1	1.486	0.746
58	1	1	1	0	1	0	1.52	0.762
59	1	1	1	0	1	1	1.554	0.78
60	1	1	1	1	0	0	1.588	0.797
61	1	1	1	1	0	1	1.623	0.814
62	1	1	1	1	1	0	1.658	0.832
63	1	1	1	1	1	1	1.695	0.849

Figure 9. IL_PEAK vs DAC code - Low $\mathbf{R}_{\text {dson }}$

Figure 10. IL_PEAK vs DAC code - High $\mathbf{R}_{\text {dson }}$

Table 36. VLEDxTOFF constants

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$\begin{aligned} & \text { VLEDxTOFF1 } \\ & \text { OR } \\ & \text { VLEDxTOFF2 } \end{aligned}$	Constant product led output voltage off time (see Figure 11 parameter vs DAC code)	CR\#2<11:8> OR CR\#2<7:4> $=$ [0000]b	-	10	-	V* $\mu \mathrm{s}$
		CR\#2<11:8> OR CR\#2<7:4> = [0001]b	-	12	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [0010]b	-	14	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [0011]b	-	16	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [0100]b	-	18	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [0101]b	-	20	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> $=$ [0110]b	-	22	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [0111]b	-	24	-	$V^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [1000]b	-	28	-	$V^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [1001]b	-	32	-	$V^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [1010]b	-	36	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [1011]b	-	40	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [1100]b	-	48	-	$V^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [1101]b	-	56	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [1110]b	-	64	-	$\mathrm{V}^{*} \mu \mathrm{~s}$
		CR\#2<11:8> OR CR\#2<7:4> = [1111]b	-	72	-	V* $\mu \mathrm{s}$
VLEDxTOFFx	Accuracy	$\mathrm{V}_{\text {LED_SHTmin }} \leq \mathrm{V}_{\text {LEDx }} \leq 5 \mathrm{~V}$	-13	-	13	\%
		$5 \mathrm{~V}<\mathrm{V}_{\text {LEDx }} \leq 7 \mathrm{~V}$	-9.5	-	9.5	
		$\mathrm{V}_{\text {LEDx }}>7 \mathrm{~V}$	-8	-	8	

Figure 11. $\mathrm{V}_{\text {LED }} \times \mathrm{T}_{\text {OFF }}$ vs DAC code

5.4.3 SPI

Table 37. SPI signal description

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
CSN	Chip Select Not	High State	0.7 * V3V3	-	V3V3	V
		Low State		-	0.3 * V3V3	
SCK	Serial Clock	High State	0.7 * V3V3	-	V3V3	V
		Low State		-	0.3 * V3V3	
SDI	Serial data Input	High State	0.7 * V3V3	-	V3V3	V
		Low State		-	0.3 * V3V3	
SDO	Serial data Output - High State	$\mathrm{l}_{\text {OUT }}=-1 \mathrm{~mA}$	VSPI-0.5	VSPI-0.2	-	V
	Serial data Output - Low State	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	-	0.2	0.5	
$l_{\text {LK }}$	Output leakage current	-	-1	-	1	$\mu \mathrm{A}$

Note: See also Chapter 4: SPI functional description.
Table 38. SPI timings

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {sck }}$	Serial clock (SCK) period		250			ns
$\mathrm{T}_{\text {Hsck }}$	SCK high time		100			ns
T Lsck	SCK low time		100			ns
$\mathrm{T}_{\text {rise_in }}$	CSN, SCK, SDI rise time	$\mathrm{F}_{\text {sck }}=4 \mathrm{MHz}$			25	ns
$\mathrm{T}_{\text {fall_in }}$	CSN, SCK, SDI fall time	$\mathrm{F}_{\text {sck }}=4 \mathrm{MHz}$			25	ns
$\mathrm{T}_{\text {Hcsn }}$	CSN high time		6			$\mu \mathrm{s}$
$\mathrm{T}_{\text {Scsn }}$	CSN setup time, CSN Iow before SCK rising		100			ns
$\mathrm{T}_{\text {Ssck }}$	SCK setup time, SCK low before CSN rising		100			ns
$\mathrm{T}_{\text {Ssdi }}$	SDI setup time before SCK rising		25			ns
Thold_sdi	SDI hold time		25			ns
$\mathrm{T}_{\text {csn_v }}$	CSN falling until SDO valid	$\begin{aligned} & \mathrm{C}_{\text {out }}=50 \mathrm{pF} ; \\ & \mathrm{I}_{\text {out }}= \pm 1 \mathrm{~mA} \end{aligned}$			100	ns
$\mathrm{T}_{\text {csn_v }}$	CSN rising until SDO tristate	$\begin{aligned} & \mathrm{C}_{\text {out }}=50 \mathrm{pF} ; \\ & \mathrm{I}_{\text {out }}= \pm 4 \mathrm{~mA} \end{aligned}$			100	ns
$\mathrm{T}_{\text {sck_v }}$	SCK falling until SDO valid	$\mathrm{C}_{\text {out }}=50 \mathrm{pF}$			60	ns
$\mathrm{T}_{\text {Rsdo }}$	SDO rise time	$\begin{aligned} & \mathrm{C}_{\text {out }}=50 \mathrm{pF} ; \\ & \mathrm{I}_{\text {out }}=-1 \mathrm{~mA} \end{aligned}$		50	100	ns

Table 38. SPI timings (continued)

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {Fsdo }}$	SDO fall time	$\mathrm{C}_{\text {out }}=50 \mathrm{pF} ;$ $\mathrm{l}_{\text {out }}=1 \mathrm{~mA}$		50	100	ns
$\mathrm{~T}_{\text {csn_low_t }}$	CSN low timeout		20	35	50	ms

5.4.4 Direct input

Table 39. Direct Input pin limits

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {DIN_L }}$	DIN Low threshold			-	0.3 * V3V3	V
$\mathrm{V}_{\text {DIN_H }}$	DIN High threshold		0.7^{*} V3V3	-	V3V3	V

5.4.5 PWM dimming

Table 40. PWMCLK and Fall back PWM description

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$V_{\text {PWMCLK_L }}$	PWMCLK low threshold				0.3 * V3V3	V
$\mathrm{V}_{\text {PWMCLK_H }}$	PWMCLK high threshold		0.7 * V3V3		V3V3	V
$\mathrm{F}_{\text {PWMCLK }}$	PWMCLK input frequency range		102400		409600	Hz
FPWMCLK_FAIL	PWMCLK frequency fail detection range		0		26500	Hz
FFALLBACK_CLK	Fall back PWM frequency clock		190	200	210	KHz

Figure 12. PWM clock failure and reset sequence

5.4.6 Digital timings

Table 41. Digital timings description

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$t_{\text {WD }}$	Watchdog timeout period		45	50	55	ms
tesn_timeout	CSN timeout		90	115	140	ms
$\mathrm{t}_{\text {AUTORESTART }}$	Autorestart time in limp home mode		45	50	55	ms
tvs,uv	VS undervoltage filter time			32		$\mu \mathrm{s}$
$\mathrm{t}_{\text {DIN_FT }}{ }^{(1)}$	DIN Filter time			32		$\mu \mathrm{s}$
$t_{\text {DIN_ST }}$	DIN status information time			12.8		$\mu \mathrm{s}$
$t_{\text {SKEW }}$	Timing skew for DIN				2.5	$\mu \mathrm{s}$
$t_{\text {VSPI_FT }}$	VSPI Filtering Time			32		$\mu \mathrm{s}$
${ }^{\text {WWAKE_UP }}$	Time for a complete wake up (V3V3 > $\left.V_{\text {POR_L }}\right)$	CSN low or DIN high for t > t WAKEUP Cap on V3V3 $=4.7 \mu \mathrm{~F}$ V3V3 > 3 V		190		$\mu \mathrm{s}$
${ }^{\text {t STDBY }}$	Time needed for a transition to standby mode (V3V3 < VPOR L)	DIN Iow Cap on V3V3 $=4.7 \mu \mathrm{~F}$ V3V3 < 2.5 V		1.6		ms
tovt	Filtering time for overtemperature (OVT bit will be set if $T_{j}>$ $\mathrm{T}_{\text {TSD }}$ for more than tovt)	guaranteed by frequency oscillator (20 MHz typical) and scan		1.2		$\mu \mathrm{s}$

1. Digital timings guaranteed by scan. WD and autorestart timings limits added to give indication on application cases.

6 Package and PCB thermal data

6.1 QFN-40L 6x6 thermal data

Figure 13. QFN-40L 6x6 on four-layers PCB

Table 42. PCB properties

Dimension	Value
Board finish thickness	$1.6 \mathrm{~mm}+/-10 \%$
Board dimension	129 mm x 60 mm
Board Material	FR4
Copper thickness (outer layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	$0.3 \mathrm{~mm}+/-0.08 \mathrm{~mm}$
Copper thickness on vias	0.025 mm

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com.

ECOPACK ${ }^{\circledR}$ is an ST trademark.

7.1 QFN-40L 6x6 package information

Figure 14. QFN-40L 6x6 package dimensions

Table 43. QFN-40L 6x6 mechanical data

Symbol	Min	Typ	Max
A	0.85	0.95	1.05
A1	0		0.05
A3	0.20	0.20	
b	5.85	0.25	0.30
D	5.85	6.00	6.15
E	3.95	4.10	6.15
D2	3.95	4.10	4.25
E2		0.50	4.25
e		0.45	
J		0.50	
L1		0.20	
L2		0.05	
L3		0.20	
L4		0.075	
P		0.18	
P1		0.18	
P2		0.08	
ddd			

8 Order codes

Table 44. Device summary

Package	Order code	
	Tube	Tape and reel
QFN-40L 6x6	L99LD20Q6	L99LD20Q6TR

Appendix A Glossary

Table 45. Glossary

Acronym	
$\mu \mathrm{C}$	Microcontroller
ADC	Analog / Digital converter
ASSP	Application Specific Standard Product
CPHA	Clock Phase
CPOL	Clock Polarity
CSN	Chip select not (normal low) (SPI)
CTRL	Control register
FE	Functional Error
FS	Fail Safe
GE	Device Error
GSB	Global Status Byte
GSBN	Global Status Bit Not
GW	Global Warning
I/O	Input /Output pins
DIN	Direct input
LH	Limp Home
LSB	Least Significant Bit
MCU	Mirocontroller
SDI	SPI Data Input (slave)
SDO	SPI Data Onput (slave)
MSB	Most Significant Bit

Revision history

Table 46. Document revision history

Date	Revision	Changes
04-Nov-2015	1	$\begin{array}{l}\text { Initial release. }\end{array}$
		$\begin{array}{l}\text { Datasheet status promoted from preliminary data to production data. } \\ \text { Updated the following sections: } \\ \text { - Description in Cover page } \\ \text { - Chapter 1: Introduction and ILx_PEAK current ranges } \\ \text { - Added Figure 3: Application diagram } \\ \text { - Section 2.3: Peak and average current setting } \\ \text { - Section 3.1.1: Standby mode } \\ \text { - Section 3.1.2: Pre-standby mode } \\ \text { - Table 2: Operating modes }\end{array}$
- Section 3.2.2: PWM dimming		
- Table 12: ROM memory map		
- - Section 4.4: Registers description: Section 4.4.1: Control Register		
description, Section 4.4.2: Status Register description, Section		
4.4.2: Status Register description, Section 4.4.3: Customer test		
and trimming registers description		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

$$
\text { © } 2018 \text { STMicroelectronics - All rights reserved }
$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ7220GR-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR KTD2026BEWE-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P MPQ4425AGQB-AEC1-Z

