

LD39080

Ultra low drop BiCMOS voltage regulator

РРАК

Features

- 0.8 A guaranteed output current
- Ultra low-dropout voltage (150 mV typ. @ 0.8 A load, 20 mV typ. @150 mA load)
- Very low quiescent current (1 mA typ. @ 0.8 A load, 1 µA max.@ 25 °C in off mode)
- Logic-controlled electronic shutdown
- Current and thermal internal limit
- ±1.5% output voltage tolerance @ 25 °C
- ADJ output voltage: 1.22 V to 5.0 V
- Temperature range: 40 to 125 °C
- Fast dynamic response to line and load changes
- Stable with ceramic capacitor
- Available in PPAK

Datasheet - production data

Applications

- Microprocessor power supply
- DSP power supply
- Post regulators for switching suppliers
- High efficiency linear regulator

Description

The LD39080 is a fast, ultra low drop linear regulator which operates from 2.5 V to 6 V input supply.

A wide range of output options is available. The low drop voltage, low noise, and ultra low quiescent current make it suitable for low voltage microprocessors and memory applications. The device is developed on the BiCMOS process which allows the low quiescent current operation regardless of the output load current.

Table 1	. Device	summary
---------	----------	---------

PPAK (tape and reel)	Output voltage
LD39080PT-R	ADJ from 1.22 to 5.0 V

Contents

1	Diagram 3			
2	Pin configuration			
3	Typical application circuits5			
4	Maximum ratings			
5	Electrical characteristics7			
6	Typical performance characteristics9			
7	Application notes			
	7.1 External capacitor			
	7.2 Input capacitor			
	7.3 Output capacitor			
	7.4 Thermal note			
	7.5 Inhibit input operation 12			
8	Package mechanical data 13			
9	Packaging mechanical data 15			
10	Revision history			

1 Diagram

(*) Not present on ADJ version.

2 Pin configuration

Figure 2. Pin connections (top view)

Table 2. Pin description

Pin	Symbol	Note
5	ADJ	Error amplifier input pin for V_O from 1.22 to 5.0 V
2	VI	LDO input voltage: V _I from 2.5 V to 6 V, C _I =1 μF not farther than 1 cm from input pin
4	V _O	LDO output voltage pins, with minimum $C_O = 2.2 \ \mu$ F needed for stability (refer to C_O vs ESR stability chart)
1	V _{INH}	Inhibit input voltage: on mode when $V_{INH} \ge 2 V$, off mode when $V_{INH} \le 0.3 V$ (do not leave it floating, not internally pulled down/up)
3	GND	Common ground

3 Typical application circuits

(C_I and C_O capacitors have to be placed as closer as possible to the IC pin).

Figure 3. LD39080 adjustable version

Note: Set R2 as closer as possible to 4.7 $K\Omega$.

Figure 4. Timing diagram

4 Maximum ratings

Symbol	Parameter	Value	Unit		
VI	DC input voltage	-0.3 to 6.5	V		
V _{INH}	Inhibit input voltage	-0.3 to V _I +0.3 (6.5 V max.)	V		
Vo	DC output voltage	-0.3 to V _I +0.3 (6.5 V max.)	V		
V _{ADJ}	ADJ pin voltage	-0.3 to V _I +0.3 (6.5 V max.)	V		
Ι _Ο	Output current	Internally limited	mA		
PD	Power dissipation	Internally limited	mW		
T _{STG}	Storage temperature range	-50 to 150	°C		
T _{OP}	Operating junction temperature range	-40 to 125	°C		

Table 3. Absolute maximum ratings

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient	100	°C/W
R _{thJC}	Thermal resistance junction-case	8	°C/W

5 Electrical characteristics

T_J = 25 °C, V_I = V_O+1 V, C_I = 1 μ F, C_O = 2.2 μ F, I_{LOAD} = 10 mA, V_{INH} = 2 V, unless otherwise specified.

Symbol	Parameter	Condit	ions	Min.	Тур.	Max.	Unit	
VI	Operating input voltage			2.5		6	V	
		$V_I = V_O + 1 V, I_{LOAD}$	= 10 mA to 0.8 A	-1.5		1.5		
Vo	Output voltage tolerance	$V_{I} = V_{O}+1 V \text{ to } 6 V,$ $I_{LOAD} = 10 \text{ mA to } 0.$ $T_{J} = -40 \text{ to } 125 \text{ °C}$	8 A	-3		3	% of V _{O(NOM)}	
V _{REF}	Reference voltage				1.22		V	
		$V_I = V_O + 1 V \text{ to } 6 V$			0.04		%	
ΔV_{O}	Output voltage line regulation	$V_{I} = V_{O}+1 V \text{ to } 6 V,$ $T_{J} = -40 \text{ to } 125 \text{ °C}$			0.1	0.2	%	
		$I_{LOAD} = 10 \text{ mA to } 0.$	8 A		0.06			
$\Delta V_{O} / \Delta I_{LOAD}$	regulation	$I_{LOAD} = 10 \text{ mA to } 0.$ $T_{J} = -40 \text{ to } 125 \text{ °C}$	8 A,		0.2	0.4	%/A	
N.		I _{LOAD} = 150 mA, T _J	=-40 to 125 °C		20	40	- mV	
V DROP	Dropout voltage (V ₁ - V _O)	$I_{LOAD} = 0.8 \text{ A}, \text{ T}_{\text{J}} =$	-40 to 125 °C		150	300		
	Quiescent current: on mode	I _{LOAD} = 10 mA to 0. T _J = -40 to 125 °C	8 A, V _{INH} = 2 V		1	2.5	mA	
Ι _Q	Quiescent current:	V _{INH} = 0.3 V				1		
	off mode	$V_{\rm INH}$ = 0.3 V, T _J = -40 to 125 °C				5	μΑ	
Short-circuit	t protection							
I _{SC}	Short-circuit protection	R _L = 0			1.6		А	
Inhibit Input								
N	Inhibit threshold low	$V_{I} = 2.5$ to 6 V off				0.3	N	
VINH	Inhibit threshold high	T _J = -40 to 125 °C		2			V	
T _{D-OFF}	Current limit	I _{LOAD} = 0.8 A, V _O =	3.3 V		15			
T _{D-ON}	Current limit	I _{LOAD} = 0.8 A, V _O = 3.3 V			15		μs	
I _{INH}	Inhibit input current ⁽¹⁾	$V_{I} = 6 V, V_{INH} = 0 \text{ to } 6 V$			±0.1	±1	μA	
AC parameter	ers							
		$V_{I} = 4.5 \pm 1$ V,	f = 120 Hz		65			
SVR	Supply voltage rejection	V _O = 3.3 V, I _{LOAD} = 10 mA,	f = 1 kHz		55		dB	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
e _N	Output noise voltage	B_W = 10 Hz to 100 kHz, C_O = 2.2 μ F, V_O = 2.5 V		100		μV_{RMS}
Т	Thermal shutdown off			170		ŝ
SHDN	Hysteresis			10		0

Table 5. Electrical characteristics (continued)

1. Guaranteed by design.

6 Typical performance characteristics

 T_J = 25 °C, V_I = V_O +1 V, C_I = 1 $\mu F,$ C_O = 2.2 $\mu F,$ I_{LOAD} = 10 mA, V_{INH} = $V_I,$ unless otherwise specified.

7 Application notes

7.1 External capacitor

The LD39080 requires external capacitors to assure the stability. These capacitors have to meet the requirements of minimum capacitance and equivalent series resistance (see *Figure 16 Figure 17*). The input/output capacitors cannot be farther than 1 cm from the relative pins and have to be connected directly to the input/output ground pins using traces without any current flowing through them. Ceramic or electrolytic capacitors can be used.

7.2 Input capacitor

An input capacitor, whose minimum value is 1 μ F, is required (the amount of capacitance can be increased without any limit). This capacitor cannot be farther than 1 cm from the input pin of the device and has to return to clean analog ground. Ceramic, tantalum or film capacitors can be used.

7.3 Output capacitor

Ceramic or tantalum capacitors can be used but the output capacitor has to meet the requirements of minimum capacitance and ESR (equivalent series resistance) value. A minimum capacitance of 2.2 μ F is a good choice to guarantee the stability of the regulator. Anyway, other C_O values can be used as per *Figure 16 Figure 17*, where the allowable ESR range is seen as a function of the output capacitance. The curve represents the stability region over the full temperature and I_O range.

7.4 Thermal note

The output capacitor has to maintain its ESR in the stable region over the operating temperature range to assure the stability. Besides, capacitor tolerance and temperature variation have to be taken into account to assure the minimum amount of capacitance all time.

7.5 Inhibit input operation

The inhibit pin can be used to turn off the regulator when pulled down, therefore by reducing the current consumption below 1 μ A. When the inhibit feature is not used, this pin has to be tied to V_I to turn on the regulator output all the time. To assure the right operation, the signal source, used to drive the inhibit pin, has to swing above and below the specified thresholds listed in *Section 5: Electrical characteristics* (V_{IH} V_{IL}). The inhibit pin must not be left floating because it is not internally pulled down/up.

8 Package mechanical data

57

Dim		mm		
Dini.	Min.	Тур.	Max.	
A	2.2		2.4	
A1	0.9		1.1	
A2	0.03		0.23	
В	0.4		0.6	
B2	5.2		5.4	
С	0.45		0.6	
C2	0.48		0.6	
D	6		6.2	
D1		5.1		
E	6.4		6.6	
E1		4.7		
е		1.27		
G	4.9		5.25	
G1	2.38		2.7	
Н	9.35		10.1	
L2		0.8	1	
L4	0.6		1	
L5	1			
L6		2.8		
R		0.20		
V2	0°		8°	

Table	6.	PPAK	mechanical	data

9 Packaging mechanical data

Figure 20. PPAK tape

Table 7. PP	AK tape an	d reel mec	hanical data

Таре			Reel		
Dim.	mm		Dim	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	Ν	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75		·	ŀ
P0	3.9	4.1	Base qty. 2500		
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40]		
Т	0.25	0.35]		
W	15.7	16.3]		

10 Revision history

Date	Revision	Changes
26-Jan-2007	1	Initial release.
25-Mar-2014	2	Updated features in cover page, Section 5: Electrical characteristics, Section 6: Typical performance characteristics, Section 7: Application notes, Section 8: Package mechanical data. Added Section 9: Packaging mechanical data. Minor text changes.
01-Aug-2017 3		Updated Table 1: Device summary on the cover page.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLD01117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 LT1117CST-5 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF