Ultra low drop and low noise BiCMOS voltage regulators

Datasheet - production data

SOT23-5L

Features

- Input voltage from 2.5 V to 6 V
- Stable with low ESR ceramic capacitors
- Ultra low-dropout voltage (60 mV typ. at 150 mA load, 0.4 mV typ. at 1 mA load)
- Very low quiescent current (85 $\mu \mathrm{A}$ typ. at no load, $170 \mu \mathrm{~A}$ typ. at 150 mA load; max.1.5 $\mu \mathrm{A}$ in OFF mode)
- Guaranteed output current up to 150 mA
- Wide range of output voltages: $1.22 \mathrm{~V} ; 1.8 \mathrm{~V}$; 2.5 V; 2.7 V; 2.8 V; 2.9 V; $3 \mathrm{~V} ; 3.3 \mathrm{~V} ; 4.7 \mathrm{~V}$
- Fast turn-on time: typ. $200 \mu \mathrm{~s}\left[\mathrm{C}_{\mathrm{O}}=1 \mu \mathrm{~F}\right.$, $\mathrm{C}_{\mathrm{BYP}}=10 \mathrm{nF}$ and $\left.\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}\right]$
- Logic-controlled electronic shutdown
- Internal current and thermal limit
- Output low noise voltage $30 \mu \mathrm{~V}_{\mathrm{RMS}}$ over 10 Hz to 100 kHz
- SVR of 60 dB at $1 \mathrm{kHz}, 50 \mathrm{~dB}$ at 10 kHz
- Temperature range: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Description

The LD3985 provides up to 150 mA , from 2.5 V to 6 V input voltage. The ultra low drop voltage, low quiescent current and low noise make it suitable for low power applications and in battery-powered systems. Regulator ground current increases slightly in dropout only, prolonging the battery life. Power supply rejection is better than 60 dB at low frequencies and rolls off at 10 kHz . High power supply rejection is maintained down to low input voltage levels common to battery operated circuits. Shutdown logic control function is available, this means that when the device is used as local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. The LD3985 is designed to work with low ESR ceramic capacitors. Typical applications are in mobile phones and similar battery-powered wireless systems.

Contents

1 Diagram 3
2 Pin configuration 4
3 Typical application 5
4 Maximum ratings 6
5 Electrical characteristics 7
6 Typical performance characteristics 9
7 Package information 13
7.1 SOT23-5L package information 13
7.2 SOT23-5L packing information 15
8 Ordering information 17
9 Revision history 18

1 Diagram

Figure 1. Schematic diagram

2 Pin configuration

Figure 2. Pin connection (top view)

Table 1. Pin description

Pin	Symbol	Name and function
1	$\mathrm{~V}_{\mathrm{I}}$	Input voltage of the LDO
2	GND	Common ground
3	$\mathrm{~V}_{\text {INH }}$	Inhibit input voltage: ON mode when $\mathrm{V}_{\text {INH }} \geq 1.2 \mathrm{~V}$, OFF mode when $\mathrm{V}_{\text {INH }}$ $\leq 0.4 \mathrm{~V}$ (Do not leave it floating, not internally pulled down/up)
4	BYPASS	Bypass pin: an external capacitor (usually 10 nF) has to be connected to minimize noise voltage
5	$\mathrm{~V}_{\mathrm{O}}$	Output voltage of the LDO

3 Typical application

Figure 3. Typical application circuit

4 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{I}	DC input voltage	-0.3 to $6{ }^{(1)}$	V
V_{O}	DC output voltage	-0.3 to $\mathrm{V}_{\mathrm{I}}+0.3$	V
$\mathrm{~V}_{\mathrm{INH}}$	Inhibit input voltage	-0.3 to $\mathrm{V}_{\mathrm{I}}+0.3$	V
I_{O}	Output current	Internally limited	
P_{D}	Power dissipation	Internally limited	
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{OP}	Operating junction temperature range	-40 to 125	${ }^{\circ} \mathrm{C}$

1. The input pin is able to withstand non repetitive spike of 6.5 V for 200 ms .

Note: \quad Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {thJC }}$	Thermal resistance junction-case	81	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{thJA}}$	Thermal resistance junction-ambient	255	${ }^{\circ} \mathrm{C} / \mathrm{W}$

5 Electrical characteristics

$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+0.5 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{BYP}}=10 \mathrm{nF}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{INH}}=1.4 \mathrm{~V}$, unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{1}	Operating input voltage		2.5		6	V
v_{o}	Output voltage accuracy, $\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}$ < 2.5 V	$\mathrm{l}_{0}=1 \mathrm{~mA}$	-50		50	mV
		$\mathrm{T}_{J}=-40$ to $125^{\circ} \mathrm{C}$	-75		75	
V_{O}	Output voltage accuracy, $\mathrm{V}_{\mathrm{O}(\mathrm{NOM})} \geq$ 2.5 V	$\mathrm{l}_{0}=1 \mathrm{~mA}$	-2		2	\% of $\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}$
		$\mathrm{T}_{\mathrm{J}}=-40$ to $125^{\circ} \mathrm{C}$	-3		3	
$\Delta \mathrm{V}_{\mathrm{O}}$	Line regulation ${ }^{(1)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+0.5 \\ & \text { to } 6 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	-0.1		0.1	\%/V
		$\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}=4.7$ to 5 V	-0.19		0.19	
$\Delta \mathrm{V}_{\mathrm{O}}$	Load regulation	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \text { to } 150 \\ & \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}(\mathrm{NOM})}<2.5 \\ & \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$		0.002	0.008	\%/mA
$\Delta \mathrm{V}_{\mathrm{o}}$	Load regulation	$\left\{\begin{array}{l} \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \text { to } 150 \\ \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}(\mathrm{NOM})} \geq 2.5 \\ \mathrm{~V} \end{array}\right.$		0.0004	0.002	\%/mA
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \text { to } \\ & 150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=-40 \text { to } \\ & 125{ }^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}(\mathrm{NOM})} \geq \\ & 2.5 \mathrm{~V} \end{aligned}$		0.0025	0.005	
$\Delta \mathrm{V}_{\mathrm{O}}$	Output AC line regulation ${ }^{(2)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+1 \mathrm{~V}, \\ & \mathrm{l}_{0}=150 \mathrm{~mA}, \\ & \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=30 \mu \mathrm{~s} \end{aligned}$		1.5		$m V_{\text {PP }}$
I_{Q}	Quiescent current ON mode: $\mathrm{V}_{\text {INH }}=$ 1.2 V	$\mathrm{I}_{\mathrm{O}}=0$		85		$\mu \mathrm{A}$
		$\begin{aligned} & l_{\mathrm{O}}=0, \mathrm{~T}_{\mathrm{J}}=-40 \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$			150	
		$\mathrm{l}_{\mathrm{O}}=0$ to 150 mA		170		
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=0 \text { to } 150 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$			250	
	OFF mode:$\mathrm{V}_{\mathrm{INH}}=0.4 \mathrm{~V}$			0.003		
		$\mathrm{T}_{\mathrm{J}}=-40$ to $125^{\circ} \mathrm{C}$			1.5	

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test conditions		Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {DROP }}$	Dropout voltage ${ }^{(3)}$	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			0.4		
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$				2	
		$\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$			20		
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$				35	
		$\mathrm{l}_{0}=100 \mathrm{~mA}$			45		
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$				70	
		$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$			60		
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$				100	
$\mathrm{I}_{\text {SC }}$	Short-circuit current	$\mathrm{R}_{\mathrm{L}}=0$			600		mA
SVR	Supply voltage rejection	$V_{1}=$ $\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+0.2$ $5 \mathrm{~V} \pm$ $\mathrm{V}_{\text {RIPPLE }}=0.1$ $\mathrm{V}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}<2.5$ $\mathrm{V}, \mathrm{V}_{\mathrm{I}}=2.55 \mathrm{~V}$	$\begin{aligned} & \mathrm{f}=1 \\ & \mathrm{kHz} \end{aligned}$		60		
			$\begin{aligned} & \mathrm{f}= \\ & 10 \\ & \mathrm{kHz} \end{aligned}$		50		dB
$\mathrm{I}_{\mathrm{O}(\mathrm{PK})}$	Peak output current	$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{O} \text { (NOM) }}-5 \%$		300	550		mA
$\mathrm{V}_{\text {INH }}$	Inhibit input logic low	$\begin{aligned} & \mathrm{V}_{1}=2.5 \mathrm{~V} \text { to } 6 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$				0.4	V
	Inhibit input logic high			1.2			
$\mathrm{I}_{\text {INH }}$	Inhibit input current	$\begin{aligned} & \mathrm{V}_{\mathrm{INH}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=6 \mathrm{~V} \end{aligned}$			± 1		nA
eN	Output noise voltage	$\begin{aligned} & \mathrm{B}_{\mathrm{W}}=10 \mathrm{~Hz} \text { to } 100 \\ & \mathrm{kHz}, \mathrm{C}_{\mathrm{O}}=1 \mu \mathrm{~F} \end{aligned}$			30		$\mu \mathrm{V}_{\text {RMS }}$
t_{ON}	Turn-on time ${ }^{(4)}$	$\mathrm{C}_{\mathrm{BYP}}=10 \mathrm{nF}$			100	250	$\mu \mathrm{s}$
$\mathrm{T}_{\text {SHDN }}$	Thermal shutdown	(5)			160		${ }^{\circ} \mathrm{C}$
Co_{0}	Output capacitor	Capacitance ${ }^{(6)}$		1		22	$\mu \mathrm{F}$
		ESR		5		5000	$\mathrm{m} \Omega$

1. For $\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}<2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.5 \mathrm{~V}$
2. For $\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}=1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.5 \mathrm{~V}$
3. Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply to input voltages below 2.5 V
4. Turn-on time is time measured between the enable input just exceeding $\mathrm{V}_{\mathrm{INH}}$ high value and the output voltage just reaching 95% of its nominal value
5. Typical thermal protection hysteresis is $20^{\circ} \mathrm{C}$
6. The minimum capacitor value is $1 \mu \mathrm{~F}$, anyway the LD3985 is still stable if the compensation capacitor has a 30% tolerance in all temperature range

6 Typical performance characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{O}(\mathrm{NOM})}+0.5 \mathrm{~V}, \mathrm{C}_{\mathrm{I}}=\mathrm{C}_{\mathrm{O}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{BYP}}=10 \mathrm{nF}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{INH}}=1.4 \mathrm{~V}$, unless otherwise specified.

Figure 4. Output voltage vs. temperature ($\mathrm{V}_{0}=1.35 \mathrm{~V}$)

Figure 5. Output voltage vs. temperature $\left(\mathrm{V}_{0}=2.7 \mathrm{~V}\right)$

Figure 6. Output voltage vs. temperature ($\mathrm{V}_{0}=3.3 \mathrm{~V}$)

Figure 7. Shutdown voltage vs. temperature

Figure 8. Shutdown voltage vs. temperature

Figure 10. Line regulation vs. temperature ($\mathrm{V}_{0}=2.7 \mathrm{~V}$)

Figure 12. Load regulation vs. temperature ($\mathrm{V}_{0}=1.35 \mathrm{~V}$)

Figure 11. Line regulation vs. temperature ($\mathrm{V}_{0}=3.3 \mathrm{~V}$)

Figure 13. Load regulation vs. temperature

Figure 14. Load regulation vs. temperature ($\mathrm{V}_{0}=3.3 \mathrm{~V}$)

Figure 16. Quiescent current vs. temperature

Figure 15. Quiescent current vs. temperature

Figure 17. Quiescent current vs. load current

Figure 18. Supply voltage rejection vs. frequency

5080

Figure 19. Load transient response

$\mathrm{V}_{\mathrm{I}}=3.2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1$ to 150 mA , rise-fall time $=1 \mu \mathrm{~s}$

Figure 22. Turn-off

$\mathrm{V}_{\mathrm{I}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=\mathrm{C}_{\mathrm{O}}=1 \mathrm{mF}$ (cer), $\mathrm{C}_{\mathrm{BYP}}=$ $10 \mathrm{nF}, \mathrm{T}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{O}}=2.8 \mathrm{~V}$

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

7.1 SOT23-5L package information

Figure 23. SOT23-5L package outline

Table 5. SOT23-5L package mechanical data

Dim.	$\mathbf{m m}$		
	Min.	Typ.	Max.
A	0.90		1.45
A1	0		0.15
A2	0.90		1.30
b	0.30	2.95	0.50
c	2.09	1.60	0.20
D		0.95	
E		2.80	
e			0.60
H	0.30		8
L	0		

Figure 24. SOT23-5L recommended footprint (dimensions in mm)

7.2 SOT23-5L packing information

Figure 25. SOT23-5L reel mechanical drawing

Figure 26. SOT23-5L oriented tape outline

Figure 27. SOT23-5L reel outline

Table 6. SOT23-5L reel mechanical data

Symbol	Dimensions (mm)		
	Min.	Typ.	Max.
A	-	-	180
C	12.8	13.0	13.2
D	20.2	-	-
N	60	-	-
T	-	-	14.4

8 Ordering information

Table 7. Ordering information

Order code	Output voltage
LD3985M122R	1.22 V
LD3985M18R	1.8 V
LD3985M25R	2.5 V
LD3985M27R	2.7 V
LD3985M28R	2.8 V
LD3985M29R	2.9 V
LD3985M30R	3.0 V
LD3985M33R	3.3 V
LD3985M47R	4.7 V

9 Revision history

Table 8. Document revision history

Date	Revision	Changes
07-May-2004	6	Part number status changed on table 3.
05-Oct-2004	7	ton values are changed on table 5. $^{\text {27-Oct-2004 }}$
17-Mar-2005	9	Order codes changed - table 3.
10-Apr-2007	10	Improved drawing quality for figures 19-20-21-22.
08-Jun-2007	11	Order codes updated.
20-Dec-2007	12	Modified: Table 1, Table 12, mechanical data for Flip-chip.
02-Dec-2008	13	Modified: Table 6 on page 14 and Figure 23 on page 17.
03-Jan-2011	14	Modified: Features on page 1 and Table 12 on page 20.
08-Jan-2014	15	Part number LD3985XX changed to LD3985. Modified title in cover page. Updated the description and Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes.
20-Jul-2017	16	Removed Flip Chip (1.57x1.22) and TSOT23-5L package information. Removed device summary table. Updated the whole document accordingly.
28-Nov-2019	17	Updated Section 7.2: SOT23-5L packing information.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LDO Voltage Regulators category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
M38D29FFHP\#U1 702103A 717726C 742457H MP20051DN-LF-Z R5F111PGGFB\#30 AP7363-SP-13 NCP103AMX285TCG NCV8664CST33T3G NCV8752AMX28TCG L9454 AP7362-HA-7 LX13043CLD TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT TLF4949EJ MP2013GQ-33-Z L9708 L970813TR 030014BB 059985X NCP121AMX173TCG NCP4687DH15T1G 701326R 702087BB 755078E TCR2EN28,LF(S LM1117DT-1.8/NO LT1086CM\#TRPBF AZ1085S2-1.5TRE1 MAX15101EWL+T NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S MAX15103EWL+T TS2937CZ-5.0 C0 MAX8878EUK30-T MAX663CPA NCV4269CPD50R2G NCV8716MT30TBG AZ1117IH-1.2TRG1 MP2013GQ-P AP2112R5A-3.3TRG1 AP7315-25W5-7 MAX15102EWL+T

