

LEXX

Very low-dropout voltage regulator with inhibit function

Datasheet - production data

Features

- Very low-dropout voltage (0.2 V typ.)
- Very low quiescent current (typ. 50 µA in OFF mode, 0.5 mA in ON mode, no load)
- Output current up to 100 mA
- Output voltages: 3 V, 3.3 V, 4.5 V, 5 V, 8 V
- Internal current and thermal limit
- Small 2.2 µF capacitor for stability
- Available in ± 1% (A) or ± 2% (C) selection at 25 °C
- Supply voltage rejection: 80 dB (typ.)
- Temperature range: 40 to 125 °C

Description

The LEXX is a very low-dropout voltage regulator available in SO-8, TO-92 packages and over a wide range of output voltages.

The very low-dropout voltage (0.2 V) and low quiescent current make it particularly suitable for low-noise, low-power applications and in battery-powered systems.

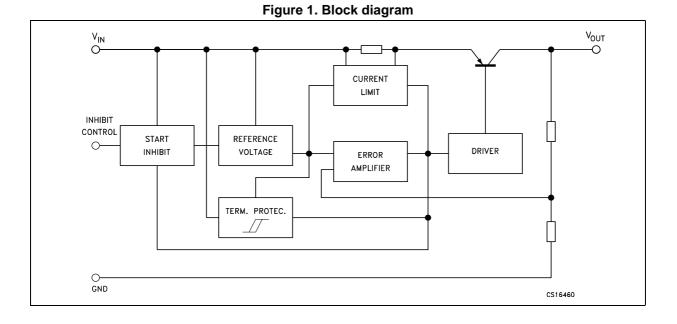
This device is pin-to-pin compatible with the L78L series. Furthermore, in the 8-pin configuration (SO-8), it uses a shutdown logic control (pin 5, TTL compatible). This means that when the device is used as a local regulator, a part of the board can be put in standby, decreasing the total power consumption. In the three-terminal configuration (TO-92), the device is always in onstate. It requires a 2.2 μ F capacitor for stability, reducing the component size and cost.

		Order codes		
SO-8	TO-92 (bag)	TO-92 (ammopack)	TO-92 (tape and reel)	Output voltages
			LE30ABZ-TR	3 V
LE30CD-TR				3 V
LE33CD-TR	LE33CZ	LE33CZ-AP	LE33CZ-TR	3.3 V
LE45CD-TR				4.5 V
LE50ABD-TR		LE33ABZ-AP		5 V
LE50CD-TR				5 V
LE80CD-TR				8 V

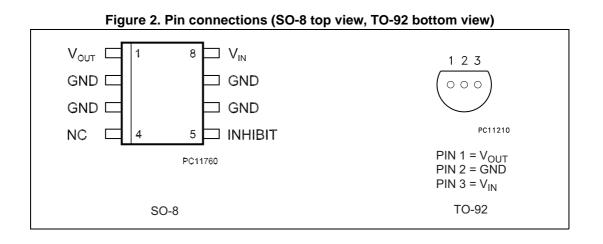
Table 1. Device summary

This is information on a product in full production.

Contents


1	Diagram	3
2	Pin configuration	4
3	Maximum ratings	5
4	Electrical characteristics	6
5	Typical performance characteristics1	3
6	Package mechanical data 1	6
7	Packaging information2	20
8	Revision history	:6

LEXX

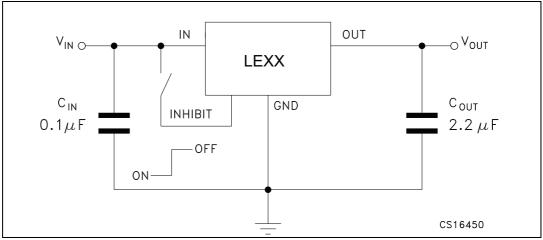


1 Diagram

2 Pin configuration

3 Maximum ratings

Symbol	Parameter	Value	Unit
VI	DC input voltage	20	V
Ι _Ο	Output current	Internally limited (1)	
P _{TOT}	Power dissipation	Internally limited	
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C


Table 2. Absolute maximum ratings

 Our SO-8 package, used for voltage regulators, is modified internally to have pins 2, 3, 6 and 7 electrically fused to the die attach pad. This frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heatsinking. The external dimensions are the same as SO-8 standard.

Table 3. Thermal data

Symbol	Parameter	SO-8	TO-92	Unit
R _{thJC}	Thermal resistance junction-case	20		°C/W
R _{thJA}	Thermal resistance junction-ambient	55	200	°C/W

Note:

If the INHIBIT pin is left floating, the regulator is in ON mode. However, when the inhibit function is not used, it should be grounded to avoid any noise.

4 Electrical characteristics

Refer to test circuits, T_J = 25 °C, C_I = 0.1 $\mu F,\,C_O$ = 2.2 μF unless otherwise specified.

Symbol	Parameter	Test condition	S	Min.	Тур.	Max.	Unit
V		I _O = 10 mA, V _I = 5 V	I _O = 10 mA, V _I = 5 V		3	3.030	V
Vo	Output voltage	$I_{O} = 10 \text{ mA}, V_{I} = 5 \text{ V}, T_{J} = -25 \text{ to } 85 ^{\circ}\text{C}$		2.940		3.060	v
VI	Operating input voltage	I _O = 100 mA				18	V
Ι _Ο	Output current limit			150			mA
ΔV_{O}	Line regulation	$V_{\rm I} = 3.7$ to 18 V, $I_{\rm O} = 0.5$ mA	١		3	15	mV
ΔV_{O}	Load regulation	$V_{I} = 4 V$, $I_{O} = 0.5$ to 100 mA			3	15	mV
		$V_{I} = 4 \text{ to } 18 \text{ V}, I_{O} = 0 \text{ mA}$	ON mode		0.5	1	
۱ _d	Quiescent current	$V_{I} = 4 \text{ to } 18 \text{ V}, I_{O} = 100 \text{ mA}$			1.5	3	mA
		V _I = 6 V			50	100	μA
	Supply voltage rejection		f = 120 Hz		81		
SVR		$I_0 = 5 \text{ mA}, V_1 = 5 \pm 1 \text{ V}$	f = 1 kHz		76		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
M	Dranaut voltage	I _O = 100 mA			0.2	0.4	V
V _d	Dropout voltage	$I_0 = 100 \text{ mA}, T_J = -40 \text{ to } 123$	5 °C			0.5	v
V _{IL}	Control input logic low	T _J = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _J = -40 to 125 °C	T _J = -40 to 125 °C				V
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , I _O = 0 to	100 mA	2	10		μF

LEXX

Refer to test circuits, T_J = 25 °C, C_I = 0.1 $\mu F,\,C_O$ = 2.2 μF unless otherwise specified.

Symbol	Parameter	Test conditions	S	Min.	Тур.	Max.	Unit
V		I _O = 10 mA, V _I = 5 V		2.940	3	3.060	V
Vo	Output voltage	I _O = 10 mA, V _I = 5 V, T _J = -2	$I_{O} = 10 \text{ mA}, V_{I} = 5 \text{ V}, T_{J} = -25 \text{ to } 85 ^{\circ}\text{C}$			3.120	V
VI	Operating input voltage	I _O = 100 mA				18	V
Ι _Ο	Output current limit			150			mA
ΔV_{O}	Line regulation	$V_{\rm I} = 3.7$ to 18 V, $I_{\rm O} = 0.5$ mA	L.		3	20	mV
ΔV_{O}	Load regulation	$V_{I} = 4 V$, $I_{O} = 0.5$ to 100 mA			3	25	mV
		$V_{I} = 4 \text{ to } 18 \text{ V}, I_{O} = 0 \text{ mA}$	ON mode		0.5	1	~ ^
۱ _d	Quiescent current	V _I = 4 to 18 V, I _O = 100 mA				1.5	3
		V _I = 6 V	OFF mode		50	100	μA
			f = 120 Hz		81		
SVR	Supply voltage rejection	I _O = 5 mA, V _I = 5 ± 1 V	f = 1 kHz		76		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Dranaut voltage	l _O = 100 mA			0.2	0.4	V
V _d	Dropout voltage	$I_0 = 100 \text{ mA}, T_J = -40 \text{ to } 125$	5 °C			0.5	V
V _{IL}	Control input logic low	T _J = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _J = -40 to 125 °C	T _J = -40 to 125 °C				V
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	100 mA	2	10		μF

Table 5. LE30C electrical characteristics

Refer to test circuits, T_J = 25 °C, C_I = 0.1 $\mu\text{F},$ C_O = 2.2 μF unless otherwise specified.

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
V		I _O = 10 mA, V _I = 5.3 V		3.234	3.3	3.366	V
Vo	Output voltage	I _O = 10 mA, V _I = 5.3 V, T _J = -	I_{O} = 10 mA, V_{I} = 5.3 V, T_{J} = -25 to 85 °C			3.432	V
VI	Operating input voltage	I _O = 100 mA				18	V
Ι _Ο	Output current limit			150			mA
ΔV_{O}	Line regulation	$V_{I} = 4$ to 18 V, $I_{O} = 0.5$ mA			3	20	mV
ΔV_O	Load regulation	$V_{\rm I} = 4.3$ V, $I_{\rm O} = 0.5$ to 100 mA	١		3	25	mV
		$V_{\rm I} = 4.3$ to 18 V, $I_{\rm O} = 0$ mA	ON mode		0.5	1	
I _d	Quiescent current	$V_{\rm I} = 4.3$ to 18 V, $I_{\rm O} = 100$ mA			1.5	3	mA
		V _I = 6 V	OFF mode		50	100	μA
			f = 120 Hz		80		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 5.3 \pm 1 \text{ V}$	f = 1 kHz		75		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
M	Dranautualtara	I _O = 100 mA			0.2	0.4	V
V _d	Dropout voltage	$I_{O} = 100 \text{ mA}, T_{J} = -40 \text{ to } 125$	°C			0.5	V
V _{IL}	Control input logic low	T _J = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _J = -40 to 125 °C		2			V
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to 2	100 mA	2	10		μF

Table 6. LE33C electrical characteristics

Refer to test circuits, T_J = 25 °C, C_I = 0.1 $\mu F,\,C_O$ = 2.2 μF unless otherwise specified.

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
M	Output voltogo	I _O = 10 mA, V _I = 6.5 V		4.41	4.5	4.59	V
Vo	Output voltage	$I_{\rm O}$ = 10 mA, $V_{\rm I}$ = 6.5 V, $T_{\rm J}$ = -2	25 to 85 °C	4.32		4.68	v
VI	Operating input voltage	I _O = 100 mA				18	V
۱ ₀	Output current limit			150			mA
ΔV_{O}	Line regulation	$V_{\rm I}$ = 5.2 to 18 V, $I_{\rm O}$ = 0.5 mA			4	30	mV
ΔV_{O}	Load regulation	$V_{\rm I} = 5.5 \text{ V}, I_{\rm O} = 0.5 \text{ to } 100 \text{ mA}$			3	25	mV
		$V_{I} = 5.5$ to 18 V, $I_{O} = 0$ mA	ON		0.5	1	
۱ _d	Quiescent current	$V_{\rm I}$ = 5.5 to 18 V, $I_{\rm O}$ = 100 mA	ON mode		1.5	3	mA
		V _I = 6 V	OFF mode		50	100	μA
	Supply voltage rejection		f = 120 Hz		77		
SVR			f = 1 kHz		72		dB
		f = 10 kHz			60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
M	Dranautwaltana	I _O = 100 mA			0.2	0.4	V
V _d	Dropout voltage	$I_0 = 100 \text{ mA}, T_J = -40 \text{ to } 125$	°C			0.5	V
V _{IL}	Control input logic low	T _J = -40 to 125 °C				0.8	V
V_{IH}	Control input logic high	T _J = -40 to 125 °C		2			V
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to 1	100 mA	2	10		μF

Table 7. LE45C electrical characteristics

Refer to test circuits, T_J = 25 °C, C_I = 0.1 $\mu\text{F},$ C_O = 2.2 μF unless otherwise specified.

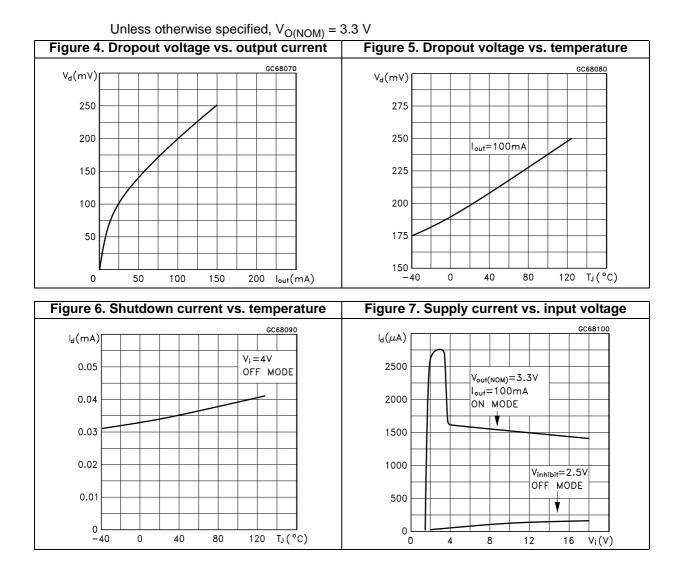
Symbol	Parameter	Test condition	IS	Min.	Тур.	Max.	Unit	
V		I _O = 10 mA, V _I = 7 V		4.95	5	5.05	V	
V _O	Output voltage	$I_0 = 10 \text{ mA}, V_1 = 7 \text{ V}, T_3 = -2$	I_{O} = 10 mA, V_{I} = 7 V, T_{J} = -25 to 85 °C			5.1	v	
VI	Operating input voltage	I _O = 100 mA				18	V	
Ι _Ο	Output current limit			150	350	425	mA	
ΔV_{O}	Line regulation	$V_{\rm I} = 5.7$ to 18 V, $I_{\rm O} = 0.5$ m/	Ą		4	20	mV	
ΔV_{O}	Load regulation	$V_{\rm I} = 6 \text{ V}, \text{ I}_{\rm O} = 0.5 \text{ to } 100 \text{ mA}$			3	15	mV	
		$V_{I} = 6 \text{ to } 18 \text{ V}, I_{O} = 0 \text{ mA}$	ON		0.5	1	A	
I _d	Quiescent current	$V_{I} = 6 \text{ to } 18 \text{ V}, I_{O} = 100 \text{ mA}$	ON mode			1.5	3	mA
		V _I = 6 V	OFF mode		50	100	μA	
	Supply voltage rejection		f = 120 Hz		76			
SVR		$I_{O} = 5 \text{ mA}, V_{I} = 7 \pm 1 \text{ V}$	f = 1 kHz		71		dB	
			f = 10 kHz		60			
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV	
M	Dranautwaltana	I _O = 100 mA			0.2	0.4	M	
V _d	Dropout voltage	$I_0 = 100 \text{ mA}, T_J = -40 \text{ to } 12$	I_{O} = 100 mA, T_{J} = -40 to 125 °C			0.5	V	
V _{IL}	Control input logic low	T _J = -40 to 125 °C				0.8	V	
V _{IH}	Control input logic high	T _J = -40 to 125 °C		2			V	
l _l	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA	
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	o 100 mA	2	10		μF	

Table 8. LE50AB electrical characteristics

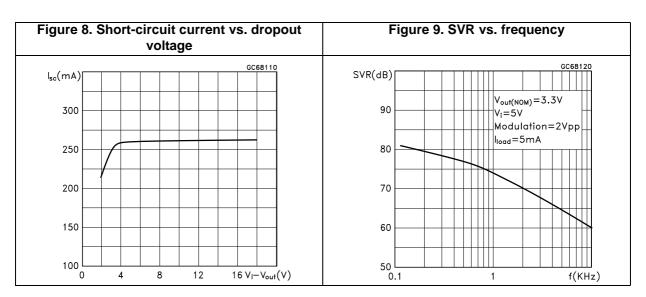
Refer to test circuits, T_J = 25 °C, C_I = 0.1 $\mu F,\,C_O$ = 2.2 μF unless otherwise specified.

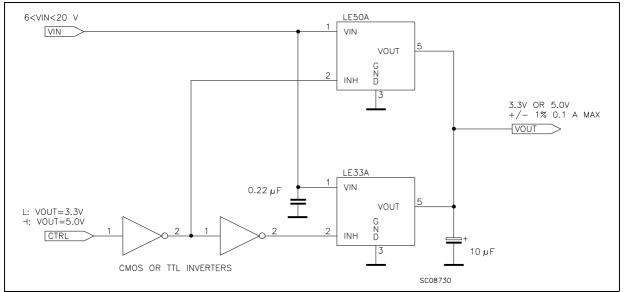
Symbol	Parameter	Test condition	IS	Min.	Тур.	Max.	Unit
V	Output voltage	I _O = 10 mA, V _I = 7 V		4.9 5	5	5.1	V
Vo	Output voltage	$I_0 = 10 \text{ mA}, V_1 = 7 \text{ V}, T_3 = -2$	25 to 85 °C	4.8		5.2	v
VI	Operating input voltage	I _O = 100 mA	I _O = 100 mA			18	V
Ι _Ο	Output current limit			150	350	425	mA
ΔV_{O}	Line regulation	$V_{\rm I} = 5.7$ to 18 V, $I_{\rm O} = 0.5$ m/	Ą		4	30	mV
ΔV_{O}	Load regulation	$V_{\rm I} = 6 \text{ V}, \text{ I}_{\rm O} = 0.5 \text{ to } 100 \text{ mA}$	۱.		3	25	mV
		$V_{I} = 6 \text{ to } 18 \text{ V}, I_{O} = 0 \text{ mA}$	ON mode		0.5	1	A
۱ _d	Quiescent current	$V_{I} = 6$ to 18 V, $I_{O} = 100$ mA	ON mode		1.5	3	mA
		V _I = 6 V	OFF mode		50	100	μA
			f = 120 Hz		76		
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}, V_1 = 7 \pm 1 \text{ V}$	f = 1 kHz		71		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Dranaut voltage	I _O = 100 mA			0.2	0.4	v
V _d	Dropout voltage	$I_0 = 100 \text{ mA}, T_J = -40 \text{ to } 12$	5 °C			0.5	v
V _{IL}	Control input logic low	T _J = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	$T_{\rm J} = -40$ to 125 °C		2			V
I _I	Control input current	$V_{I} = 6 V, V_{C} = 6 V$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , I _O = 0 to	o 100 mA	2	10		μF

Table 9. LE50C electrical characteristics


Refer to test circuits, T_J = 25 °C, C_I = 0.1 $\mu\text{F},$ C_O = 2.2 μF unless otherwise specified.

Symbol	Parameter	Test condition	IS	Min.	Тур.	Max.	Unit	
V		I _O = 10 mA, V _I = 10 V		7.84	8	8.16	V	
Vo	Output voltage	$I_0 = 10 \text{ mA}, V_1 = 10 \text{ V}, T_3 =$	$I_{O} = 10 \text{ mA}, V_{I} = 10 \text{ V}, T_{J} = -25 \text{ to } 85 ^{\circ}\text{C}$			8.32	v	
VI	Operating input voltage	I _O = 100 mA	I _O = 100 mA			18	V	
Ι _Ο	Output current limit			150			mA	
ΔV_{O}	Line regulation	$V_{\rm I} = 8.7$ to 18 V, $I_{\rm O} = 0.5$ m/	٩		5	35	mV	
ΔV_{O}	Load regulation	$V_{\rm I} = 9$ V, $I_{\rm O} = 0.5$ to 100 mA	۱.		3	25	mV	
		$V_{I} = 9$ to 18 V, $I_{O} = 0$ mA	ON mode		0.7	1.6	~^^	
۱ _d	Quiescent current	$V_{\rm I} = 9$ to 18 V, $I_{\rm O} = 100$ mA	ON mode			1.7	3.6	mA
		V _I = 9 V	OFF mode		70	140	μA	
	Supply voltage rejection		f = 120 Hz		72			
SVR		$I_{O} = 5 \text{ mA}, V_{I} = 10 \pm 1 \text{ V}$	f = 1 kHz		66		dB	
			f = 10 kHz		57			
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV	
M	Dranautwaltana	I _O = 100 mA			0.2	0.2 0.4	V	
V _d	Dropout voltage	I_{O} = 100 mA, T _J = -40 to 125 °C				0.5	V	
V _{IL}	Control input logic low	T _J = -40 to 125 °C				0.8	V	
V_{IH}	Control input logic high	T _J = -40 to 125 °C	T _J = -40 to 125 °C				V	
I _I	Control input current	$V_{I} = 9 V, V_{C} = 6 V$			10		μA	
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	o 100 mA	2	10		μF	


Table 10. LE80C electrical characteristics


5 Typical performance characteristics

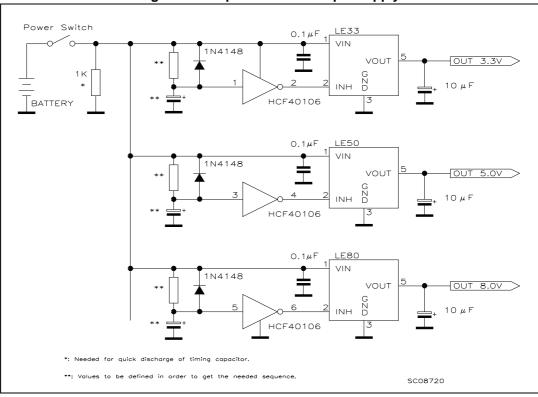
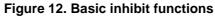
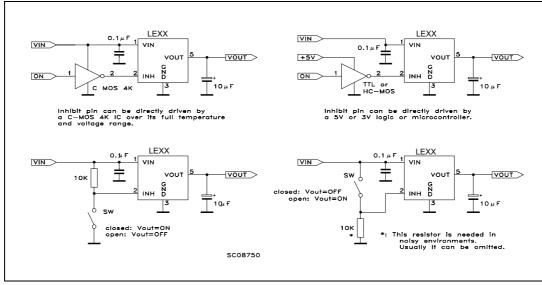




Figure 11. Sequential multi-output supply

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

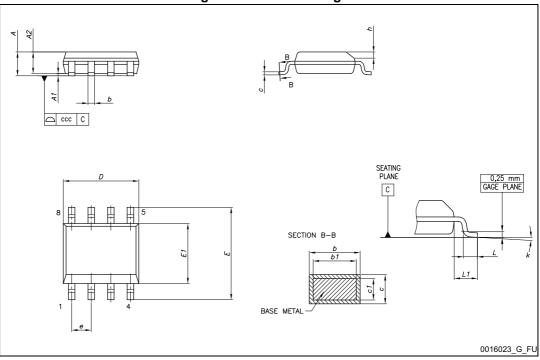


Figure 13. SO-8 drawings

Dim.	mm			
	Min.	Тур.	Max.	
А			1.75	
A1	0.10		0.25	
A2	1.25			
b	0.31		0.51	
b1	0.28		0.48	
С	0.10		0.25	
c1	0.10		0.23	
D	4.80	4.90	5.00	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е		1.27		
h	0.25		0.50	
L	0.40		1.27	
L1		1.04		
L2		0.25		
k	0°		8°	
CCC			0.10	

Table 11. SO-8 mechanical data

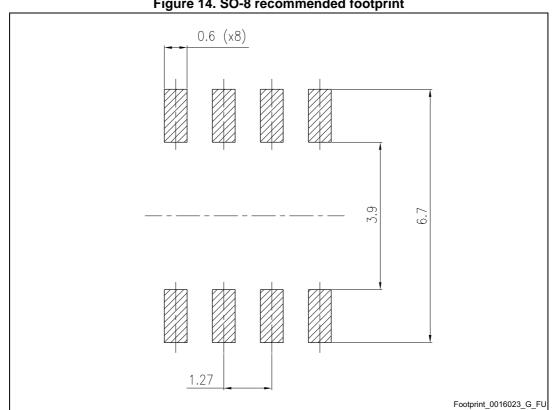
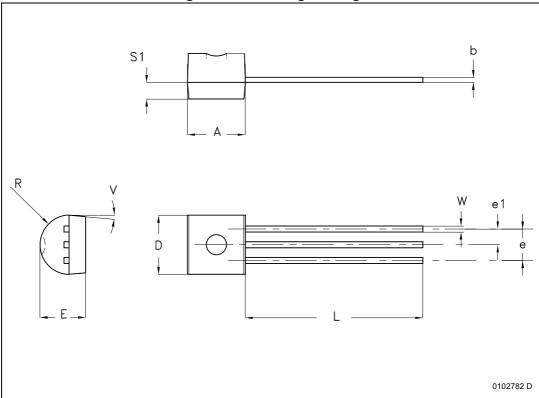



Figure 14. SO-8 recommended footprint

Figure 15. TO-92 bag drawings

Table 12 TO-92 bag mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А	4.32		4.95
b	0.36		0.51
D	4.45		4.95
E	3.30		3.94
е	2.41		2.67
e1	1.14		1.40
L	12.70		15.49
R	2.16		2.41
S1	0.92		1.52
W	0.41		0.56
V		5°	

7 Packaging information

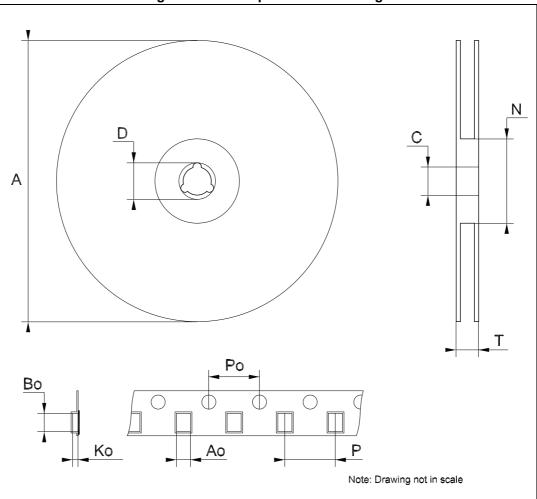


Figure 16. SO-8 tape and reel drawings

Dim.		mm			
	Min.	Тур.	Max.		
А			330		
С	12.8		13.2		
D	20.2				
Ν	60				
Т			22.4		
Ao	8.1		8.5		
Во	5.5		5.9		
Ko	2.1		2.3		
Po	3.9		4.1		
Р	7.9		8.1		

Table 13 SO-8 tape and reel mechanical data

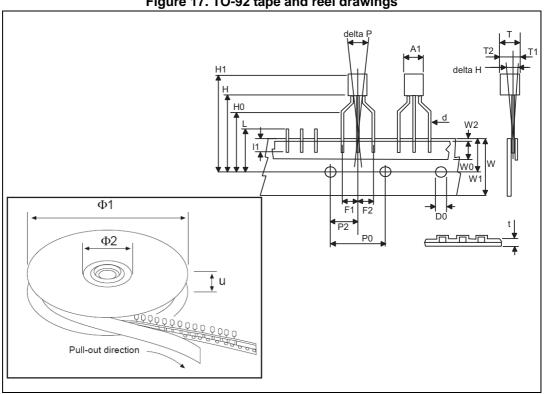


Figure 17. TO-92 tape and reel drawings

Table 14. TO-92 tape and reel mechanical data				
Dim.	mm			
	Min.	Тур.	Max.	
A1			4.80	
Т			3.80	
T1			1.60	
T2			2.30	
d	0.45	0.47	0.48	
P0	12.50	12.70	12.90	
P2	5.65	6.35	7.05	
F1, F2	2.40	2.50	2.94	
F3	4.98	5.08	5.48	
delta H	-2.00		2.00	
W	17.50	18.00	19.00	
WO	5.5	6.00	6.5	
W1	8.50	9.00	9.25	
W2			0.50	
Н		18.50	21	
H3	0.5	1	2	
H0	15.50	16.00	18.8	
H1		25.0	27.0	
D0	3.80	4.00	4.20	
t			0.90	
L			11.00	
11	3.00			
delta P	-1.00		1.00	
Ø1	352	355	358	
Ø2	28	30	32	
u	44	47	50	

Table 14. TO-92 tape and reel mechanical data

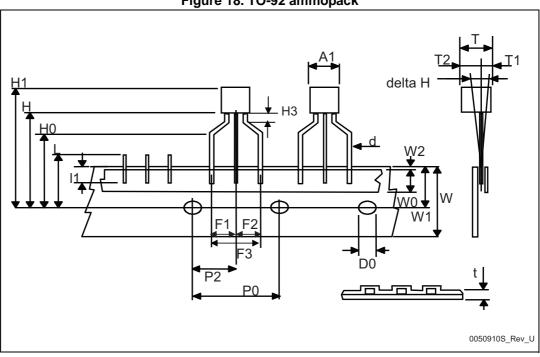


Figure 18. TO-92 ammopack

	Table 15. TO-92 ammopack mechanical data mm		
Dim.	Min.	Тур.	Max.
A1			4.80
Т			3.80
T1			1.60
T2			2.30
d	0.45	0.47	0.48
P0	12.50	12.70	12.90
P2	5.65	6.35	7.05
F1, F2	2.40	2.50	2.94
F3	4.98	5.08	5.48
delta H	-2.00		2.00
W	17.50	18.00	19.00
W0	5.5	6.00	6.5
W1	8.50	9.00	9.25
W2			0.50
Н		18.50	21
H3	0.5	1	2
H0	15.50	16.00	18.8
H1		25.0	27.0
D0	3.80	4.00	4.20
t			0.90
L			11.00
l1	3.00		
delta P	-1.00		1.00

Table 15. TO-92 ammopack mechanical data

8 Revision history

Date	Revision	Changes	
09-Jul-2004	6	I _O typ. and max. are changed in tab. 24 and 25 - pag. 14.	
16-Mar-2005	7	Add Tape & Reel for TO-92 - Note on Table 3.	
12-Feb-2007	8	Change value T _{OP} on Table 2.	
26-Jul-2007	9	Add Table 1 in cover page.	
29-Nov-2007	10	Modified: Table 25.	
12-Feb-2008	11	Modified: Table 25.	
10-Jul-2008	12	Modified: Table 1 and Table 25.	
22-May-2012	13	Updated: Table 1 on page 1. Changed: T_A in T_J test conditions from table 4 to table 10.	
14-Mar-2014	14	Changed the part numbers LExxAB and LExxC to LEXX. Updated the title. Added the ammopack package to the figure in cover page. Updated the <i>Table 1: Device summary</i> . Updated the <i>Description</i> . Updated <i>Figure 3</i> . Changed the title of <i>Figure 6</i> . Updated mechanical data.	

Table 16. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID2573 Rev 14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MAX202ECWE-LF MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R 636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G MC78M12CDTT5G L9468N