LET9045F

RF power transistor from the LdmoST family of n-channel enhancement-mode lateral MOSFETs

Features

■ Excellent thermal stability

- Common source configuration

■ $\mathrm{P}_{\text {OUT }}(@ 28 \mathrm{~V})=45 \mathrm{~W}$ with 18.5 dB gain @ 960 MHz

- $\mathrm{P}_{\text {OUT }}(@ 36 \mathrm{~V})=70 \mathrm{~W}$ with 18.5 dB gain @ 960 MHz
- BeO free package

■ In compliance with the 2002/95/EC European directive

Description

The LET9045F is a common source n-channel enhancement-mode lateral field-effect RF power transistor designed for broadband commercial and industrial applications at frequencies up to 1.0 GHz . The LET9045F is designed for high gain and broadband performance operating in common source mode at 28 V . It is ideal for base station applications requiring high linearity.

Figure 1. Pin out

Table 1. Device summary

Order code	Package	Branding
LET9045F	M250	LET9045F

1 Maximum ratings

Table 2. Absolute maximum ratings ($\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source voltage	80	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate-source voltage	-0.5 to +15	V
I_{D}	Drain current	9	A
$\mathrm{P}_{\mathrm{DISS}}$	Power dissipation $\left(@ \mathrm{~T}_{\mathrm{C}}=70^{\circ} \mathrm{C}\right)$	108	W
$\mathrm{~T}_{\mathrm{J}}$	Max. operating junction temperature	200	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{JC})}$	Junction-case thermal resistance	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2 Electrical characteristics

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$
Table 4. Static

Symbol	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	80			V
$\mathrm{I}_{\mathrm{DSS}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$			1	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{GSS}}$	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$			1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{GS}(\mathrm{Q})}$	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=300 \mathrm{~mA}$	2.0		5.0	V
$\mathrm{~V}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$		0.9	1.2	V
G_{FS}	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	2.5			mho
$\mathrm{C}_{\mathrm{ISS}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$		58		pF
$\mathrm{C}_{\mathrm{OSS}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$		29		pF
$\mathrm{C}_{\mathrm{RSS}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$		0.8		pF

Table 5. Dynamic

Symbol	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{P}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{DQ}}=300 \mathrm{~mA} ; \mathrm{P}_{\mathrm{IN}}=1 \mathrm{~W} ; \mathrm{f}=960 \mathrm{MHz}$	45	59		W
$\mathrm{G}_{P S}$	$\mathrm{~V}_{\mathrm{DD}}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{DQ}}=300 \mathrm{~mA} ; \mathrm{P}_{\mathrm{IN}}=1 \mathrm{~W} ; \mathrm{f}=960 \mathrm{MHz}$	16.5	17.7		dB
$\mathrm{~h}_{\mathrm{D}}$	$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{DQ}}=300 \mathrm{~mA} ; \mathrm{P}_{\mathrm{IN}}=1 \mathrm{~W} ; \mathrm{f}=960 \mathrm{MHz}$	60	65		$\%$
Load mismatch	$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V} ; \mathrm{I}_{\mathrm{DQ}}=300 \mathrm{~mA} ; \mathrm{P}_{\mathrm{IN}}=1 \mathrm{~W} ; \mathrm{f}=960 \mathrm{MHz}$ All phase angles	$10: 1$			VSWR

3 Impedance data

Figure 2. Impedance data

Table 6. Impedance data

Frequency	$\mathbf{Z}_{\mathbf{I N}}(\Omega)$	$\mathbf{Z}_{\mathrm{DL}}(\Omega)$
920	$0.8-\mathrm{j} 0.08$	$5.3+\mathrm{j} 0.63$
945	$0.7-\mathrm{j} 0.4$	$5+\mathrm{j} 1.5$
960	$0.6-\mathrm{j} 0.6$	$4.7+\mathrm{j} 2$

4 Typical performances

Figure 3. Gain vs output power and bias current, freq $=960 \mathrm{MHz}, \mathrm{Vdd}=28 \mathrm{~V}$

Figure 4. Gain and efficiency vs output power, freq $=960 \mathrm{MHz}$, Vdd = 28 V , Idq $=300 \mathrm{~mA}$

Table 7. Output power vs supply voltage freq $=960 \mathrm{MHz}, \mathrm{Vdd}=28 \mathrm{~V}$,
Idq $=300 \mathrm{~mA}$

5 Test circuit

Figure 5. Test circuit

Table 8. LET9045F components list

Item	Qty	Part number	Vendor	Description
R1, R2	2	CR1206-8W-112JB	VENKEL	$1.1 \mathrm{k} \Omega 1 / 8 \mathrm{~W}$ surface mount chip resistor
R3	1	CR1206-8W-100JB	VENKEL	$10 \Omega 1 / 8 \mathrm{~W}$ surface mount chip resistor
Coil	2		BELDEN	Inductor 5 turns air WOUND\#20AWG ID $=0.130$ in (3.3 mm) bylon coated
$\begin{aligned} & \mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} \\ & 3, \mathrm{~B} 4, \mathrm{B5} 5 \end{aligned}$	5	2743021447	FAIR-RITE CORP	Surface mount EMI sheild bead
$\begin{gathered} \text { C1,C7 } \\ \text { C8 } \end{gathered}$	3	T491D106K035AT	Kemet	$10 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum capacitors
C2	1			$100 \mu \mathrm{~F} 63 \mathrm{~V}$ electrolytic capacitor
$\begin{gathered} \text { C3, C4, } \\ \text { C10, } \\ \text { C15 } \end{gathered}$	4	ATC100B470XXXX	ATC	47 pF chip capacitor
C5, C6	2	ATC200B393MW	ATC	39000 pF chip capacitor
C9	1			330 uF 50 V electrolytic capacitor
C11, C13, C14	3	27291PC	Johanson	$0.8-8 \mathrm{pF}$ giga trim variable capacitor
C12	1	ATC100B110XXXX	ATC	11 pF chip capacitor
TL1				$\mathrm{L}=1.350 \mathrm{in}$ [34.29 mm] W $=0.082 \mathrm{in}$ [02.08 mm]
TL2				$\mathrm{L}=0.144 \mathrm{in}$ [3.65 mm] W $=0.082 \mathrm{in}$ [02.08 mm]
TL3				$\mathrm{L}=0.311 \mathrm{in}[7.91 \mathrm{~mm}$] W $=0.082 \mathrm{in}$ [02.08 mm]
TL4				$\mathrm{L}=00.82 \mathrm{in}$ [2.09 mm] W $=0.323 \mathrm{in}$ [08.21 mm]
TL5				$\mathrm{L}=0.194 \mathrm{in}$ [4.94 mm] W $=0.323 \mathrm{in}$ [08.21 mm]

Table 8. LET9045F components list (continued)

Item	Qty	Part number	Vendor	Description
TL6				$\mathrm{L}=0.059 \mathrm{in}[1.49 \mathrm{~mm}] \mathrm{W}=0.506 \mathrm{in}[12.85 \mathrm{~mm}]$
TL7				$\mathrm{L}=0.144 \mathrm{in}[3.65 \mathrm{~mm}] \mathrm{W}=0.506 \mathrm{in}[12.85 \mathrm{~mm}]$
TL8				$\mathrm{L}=0.208 \mathrm{in}[5.28 \mathrm{~mm}] \mathrm{W}=0.506 \mathrm{in}[12.85 \mathrm{~mm}]$
TL9				$\mathrm{L}=0.275 \mathrm{in}[6.98 \mathrm{~mm}] \mathrm{W}=0.323 \mathrm{in}[08.21 \mathrm{~mm}]$
TL10				$\mathrm{L}=0.210 \mathrm{in}[5.33 \mathrm{~mm}] \mathrm{W}=0.082 \mathrm{in}[02.08 \mathrm{~mm}]$
TL11			$\mathrm{L}=0.260 \mathrm{in}[6.60 \mathrm{~mm}] \mathrm{W}=0.082 \mathrm{in}[02.08 \mathrm{~mm}]$	
TL12			$\mathrm{L}=1.350 \mathrm{in}[34.29 \mathrm{~mm}] \mathrm{W}=0.082 \mathrm{in}[02.08 \mathrm{~mm}]$	
Board 3X5	1		Er=2.55 t=0.0026in $\mathrm{h}=0.030 \mathrm{in}$	

Figure 6. Circuit layout

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com.
ECOPACK ${ }^{\circledR}$ is an ST trademark.
Table 9. M250 (. 230×1360 2L N/HERM W/FLG) mechanical data

Dim.	mm.			Inch		
	Min	Typ	Max	Min	Typ	Max
A	5.21		5.71	0.205		0.225
B	2.16		2.92	0.085		0.115
C	5.59		6.09	0.220		0.240
D	8.89		9.40	0.350		0.370
E	9.40		9.91	0.370		0.390
F	0.11		0.15	0.004		0.006
G	0.89		1.14	0.035		0.045
H	1.45		1.70	0.057		0.067
I	2.67		3.94	0.105		0.155

Figure 7. Package dimensions

7 Revision history

Table 10. Document revision history

Date	Revision	Changes
02-Nov-2009	1	Initial release.
11-Feb-2010	2	Changed test condition for $\mathrm{V}_{(\mathrm{BR}) \mathrm{DSs}}$ in Table 4: Static.
15-Apr-2011	3	Updated features in cover page.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF MOSFET Transistors category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
MRF492 MRFE8VP8600HR5 ARF1511 ARF465BG BF 2030 E6814 BLF861A DU1215S DU28200M UF28100M DU2820S MHT1008NT1 MMRF1014NT1 MRF426 ARF468BG MAPHST0045 MRFE6VP61K25NR6 DU2860U VRF152GMP MRFE6VP5300NR1 BF2040E6814HTSA1 MRFE6VP5150GNR1 LET9060S MRF136Y BF999E6327HTSA1 SD2931-12MR BF998E6327HTSA1 AFV10700HR5 MRF141 MRF171 MRF172 MRF174 QPD1020SR BF 1005S E6327 MRF134 MRF136 MRF137 MRF141G MRF151A MRF151G MRF157 MRF158 MRF160 MRF171A MRF177 UF2840G TGF3021-SM ARF1510 ARF448BG ARF449AG ARF466BG

