

MEMS audio sensor omnidirectional digital microphone

Datasheet - production data

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 60 dB signal-to-noise ratio
- · Omnidirectional sensitivity
- -26 dBFS sensitivity
- PDM output
- HCLGA package
 - Top-port design
 - SMD-compliant
 - EMI-shielded
 - ECOPACK[®], RoHS, and "Green" compliant

- Speech recognition
- A/V eLearning devices
- · Gaming and virtual reality input devices
- · Digital still and video cameras
- Antitheft systems

Description

The MP34DT02 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP34DT02 has an acoustic overload point of 120 dBSPL with a 60 dB signal-to-noise ratio and –26 dBFS sensitivity.

The MP34DT02 is available in a top-port, SMD-compliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

Applications

- · Mobile terminals
- · Laptop and notebook computers
- · Portable media players
- VoIP

Table 1. Device summary

		•	
Order codes	Temperature range [°C]	Package	Packing
MP34DT02	-40 to +85	HCLGA (3 x 4 x 1.06) mm 4LD	Tray
MP34DT02TR	-40 to +85	HCLGA (3 x 4 x 1.06) mm 4LD	Tape and reel

Contents MP34DT02

Contents

1	Pin description	3
2	Acoustic and electrical specifications	4
	2.1 Acoustic and electrical characteristics	4
	2.2 Frequency response	5
3	Application recommendations	6
	3.1 Timing characteristics	7
4	Sensing element	8
5	Absolute maximum ratings	9
6	Functionality 1	10
	6.1 L/R channel selection	10
7	Package mechanical data	11
8	Carrier tape mechanical specifications	13
9	Process recommendations	14
10	Pavision history	15

MP34DT02 Pin description

1 Pin description

Figure 1. Pin connections

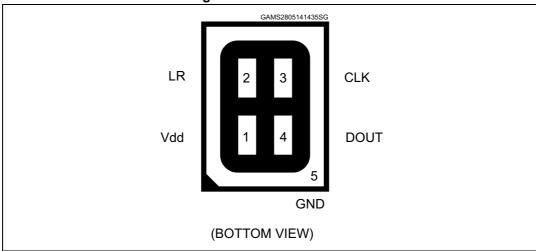


Table 2. Pin description

Pin n°	Pin name	Function
1	Vdd	Power supply
2	LR	Left/Right channel selection
3	CLK	Synchronization input clock
4	DOUT	Left/Right PDM data output
5 (ground ring)	GND	0 V supply

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, $T = 25 \, ^{\circ}\text{C}$, unless otherwise noted.

Table 3. Acoustic and electrical characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.64	1.8	3.6	V
ldd	Current consumption in normal mode	Mean value		0.6		mA
IddPdn	Current consumption in power-down mode ⁽²⁾			20		μΑ
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity		-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted at 1 kHz, 1 Pa		60		dB
PSR	Power supply rejection	Guaranteed by design		-70		dBFS
Clock	Input clock frequency ⁽³⁾		1	2.4	3.25	MHz
Ton	Turn-on time (4)	Guaranteed by design			10	ms
Тор	Operating temperature range		-40		+85	°C
V _{IOL}	Low level logic input/output voltage	I _{out} = 1 mA	-0.3		0.35xVdd	V
V _{IOH}	High level logic input/output voltage	I _{out} = 1 mA	0.65xVdd		Vdd+0.3	V

^{1.} Typical specifications are not guaranteed.

Table 4. Distortion specifications

Parameter	Test condition	Value
Distortion	100 dBSPL (1 kHz)	< 1% THD+N
Distortion	115 dBSPL (1 kHz)	< 2% THD+N
Distortion	120 dBSPL (1 kHz)	< 10% THD+N

4/16 DocID026560 Rev 2

^{2.} Input clock in static mode.

^{3.} Duty cycle: min = 40% max = 60%.

^{4.} Time from the first clock edge to valid output data.

2.2 Frequency response

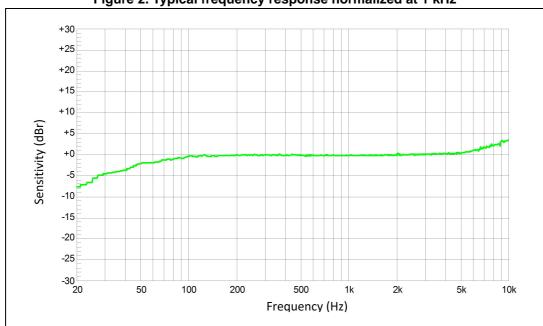


Figure 2. Typical frequency response normalized at 1 kHz

3 Application recommendations

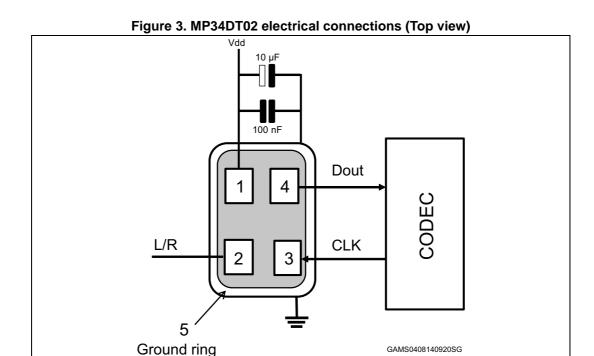
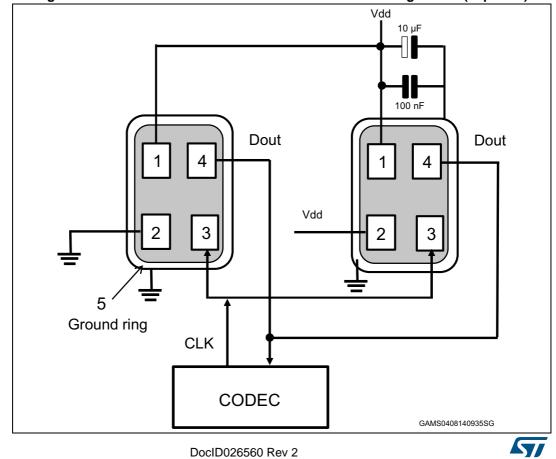



Figure 4. MP34DT02 electrical connections for stereo configuration (Top view)

6/16

Power supply decoupling capacitors (100 nF ceramic, 10 μ F ceramic) should be placed as near as possible to pin 1 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 5).

3.1 **Timing characteristics**

Table 5. Timing characteristics

Parameter	Description	Min	Max	Unit
f _{CLK}	Clock frequency for normal mode		3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	18 ⁽¹⁾		ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾	ns
T_L,EN	Data enabled on DATA line, L/R pin = 0	18 ⁽¹⁾		ns
$T_{L,DIS}$	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾	ns

^{1.} From design simulations

 $T_{\text{\tiny L,DIS}}$ $T_{\text{R,DIS}}$ $T_{\mathsf{R},\mathsf{EN}}$ High Z High Z PDM R PDM L High Z AM045165v1

Figure 5. Timing waveforms

Sensing element MP34DT02

4 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transducers the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

5 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 6. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V
T _{STG}	Storage temperature range	-40 to +125	°C
	Electrostatic discharge protection	2 (HBM)	kV
ESD	3 discharges at \pm 8 kV direct contact to lid when unit is grounded (IEC 61000-4-2) and 3 discharges at \pm 2 kV direct contact to I/O pins. (MIL 883E, Method 3015.7)	±8	kV

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is ESD-sensitive, improper handling can cause permanent damage to the part.

Functionality MP34DT02

6 Functionality

6.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as shown in *Table 7*. The L/R pin must be connected to Vdd or GND.

Table 7. L/R channel selection

L/R	CLK low	CLK high
GND	Data valid	High impedance
Vdd	High impedance	Data valid

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Soldering information

The HCLGA 3x4 4LD package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Landing pattern and soldering recommendations are available at www.st.com.

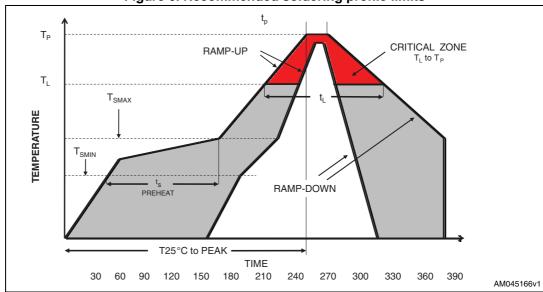


Figure 6. Recommended soldering profile limits

Table 8. Recommended soldering profile limits

Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature Maximum temperature Time (T _{SMIN} to T _{SMAX})	T _{SMIN} T _{SMAX} t _S	150 °C 200 °C 60 sec to 120 sec
Ramp-up rate	T _{SMAX} to T _L	
Time maintained above liquidus temperature Liquidus temperature	t _L T _L	60 sec to 150 sec 217 °C
Peak temperature	T _P	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec
Ramp-down rate		6 °C/sec max
Time 25 °C (t25 °C) to peak temperature		8 minutes max

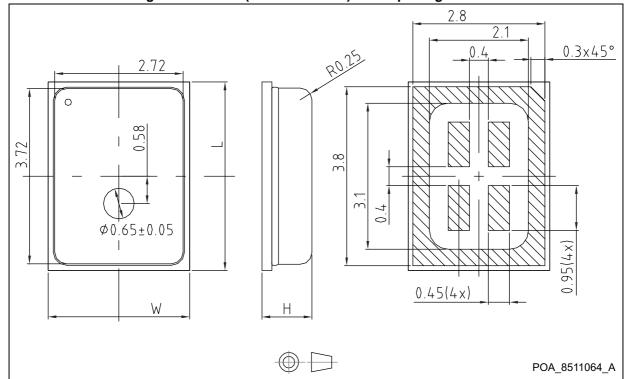


Figure 7. HCLGA (3 x 4 x 1.06 mm) 4-lead package outline

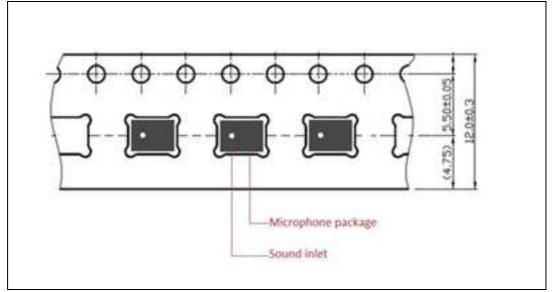
Note:

The MEMS microphone metal cap can exhibit some level of variation in color when the device is subjected to thermal process.

Dimensions are in millimeter unless otherwise specified. General tolerance is \pm 0.15 mm unless otherwise specified.

Table 9. HCLGA (3 x 4 x 1.06 mm) mechanical data

Item	Dimension (mm)	Tolerance (mm)
Length [L]	4	± 0.1
Width [W]	3	± 0.1
Height [H]	1.06	± 0.1


12/16 DocID026560 Rev 2

Carrier tape mechanical specifications 8

2.0±0.1 1.0±0.05 Ø1.55±0.05 SECTION B-B (10/1) SECTION A-A (10/1)

Figure 8. Carrier tape without microphone-top view

9 **Process recommendations**

To ensure a consistent manufacturing process it is strongly advised to comply with following recommendations:

- The recommended pick-up area for the MP34DT02 package must be defined using the worst case (ie. no device alignment during picking process). This area has been defined considering all the tolerances of the components involved (reel, package, sound inlet). Picker tolerance shall be considered as well.
- To prevent damage to the MEMS membrane or incorrect pick-up and placement, do not pick up the component on the inlet area
- For the package outline please refer to Figure 10. Nozzle shape, size, and placement accuracy are the other key factors to consider when deciding on the coordinates for the picking.
- Device alignment before picking is highly recommended.
- A vacuum force greater than 7 psi must be avoided
- $1 \text{ kPa} = 0.145 \text{ psi (lb/in2)} = 0.0102 \text{ kgf/cm}^2 = 0.0098 \text{ atm}$
- All the recommended dimensions (device safe pick area) do not include the pick and place equipment tolerances
- According to Figure 10, standard picker tool can be used to handle this device

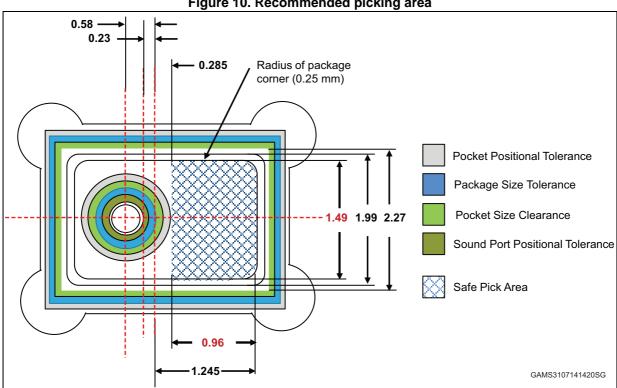


Figure 10. Recommended picking area

MP34DT02 Revision history

10 Revision history

Table 10. Document revision history

Date	Revision	Changes	
19-Jun-2014	1	Initial release	
03-Sep-2014	2	Updated sensitivity values parameter Table 3 on page 4 Added: - Table 4: Distortion specifications on page 4 and Figure 2: Typical frequency response normalized at 1 kHz on page 5 - Section 3: Application recommendations on page 6 - Section 9: Process recommendations on page 14	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MEMS Microphones category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

8103AC8333S25.00000X S-VM2020-C SPK0838HT4H-1 MMICT4076-00-908 MMICT4078-00-908 ICS-41352 1007079-1 ASFLM125.000MHZ-C 5000AC-8E-25E0-25.000000X ICS-40300 ICS-40618 ICS-43432 3807ACTC3-33EG-8.19200 501AAA27M0000CAF
SIT9120AC-2C2-25E125.000000 SIT9120AC-2C2-25E200.000000 SIT9121AI-2C3-33E100.000000 9120AI-2C3-25E100.0000
MP34DB01TR 8002AI-13-33E16.00000 5001AI-2D-18N0-20.000000 MM042602-4 MM042602-5 MM033802-1 ICS-43434 ASFLM228.224MHZ-LR-T ICS-40310 ICS-40720 9003AC-14-33EQ25.00000 SIT9120AC-2C2-33E125.000000 1618AA-13-33S-16.000000G PMM3738-VM1000-R 64-8801 IM69D120V01XTSA1 SPA1687LR5H-1 SPG08P4HM4H-1 SPH0611LR5H-1 SPH0641LM4H-1
SPH0644LM4H-1 SPH0645LM4H-B SPH0690LM4H-1 SPH1642HT5H-1 SPH1668LM4H-1 SPH6611LR5H-1 SPK0415HM4H-B
SPK0641HT4H-1 SPM0687LR5H-1 SPM1423HM4H-B SPQ1410HR5H-B SPU0410HR5H-PB