OA1MPA, OA2MPA, OA4MPA

High precision low-power CMOS op amp
Single (OA1MPA) Quad (OA4MPA)

Features

- Low offset voltage: $200 \mu \mathrm{~V}$ max.
- Low power consumption: $10 \mu \mathrm{~A}$ at 5 V
- Low supply voltage: 1.5 V to 5.5 V
- Gain bandwidth product: 150 kHz typ.
- Low input bias current: 1 pA typ.
- Rail-to-rail input and output
- EMI hardened operational amplifiers
- High tolerance to ESD: 4 kV HBM
- Extended temperature range: -40 to $+125{ }^{\circ} \mathrm{C}$

Benefits

- High precision without calibration
- Energy saving
- Guaranteed operation on low-voltage battery

Applications

- Wearable
- Fitness and healthcare
- Medical instrumentation

Description

The OA1MPA, OA2MPA, OA4MPA series of single, dual, and quad operational amplifiers offer low-voltage operation, rail-to-rail input and output, and excellent precision ($\mathrm{V}_{\text {io }}$ lower than $200 \mu \mathrm{~V}$ at $25^{\circ} \mathrm{C}$).

These low power op amps benefit from STMicroelectronics 5 V CMOS technology and offer an excellent speed/power consumption ratio (150 kHz typical gain bandwidth) while consuming less than $14 \mu \mathrm{~A}$ at 5 V . The OA1MPA, OA2MPA, OA4MPA series also feature an ultra-low input bias current.

The OA1MPA, OA2MPA, OA4MPA are respectively the single, dual and quad operational amplifier versions and are housed in the smallest industrial package.

The OA1MPA, OA2MPA, OA4MPA family is the ideal choice for wearable, fitness and healthcare applications.

Table 1. Device summary

Order code	Temperature range	Package	Packaging	Marking
OA1MPA22C	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SC70-5	Tape and reel	K1W
OA2MPA22Q		DFN8 2x2		K1W
OA2MPA34S		MiniSO8		V712
OA4MPA33Q		QFN16 3x3		K1W

Contents

1 Pin connections 3
2 Absolute maximum ratings and operating conditions 4
3 Electrical characteristics 6
4 Application information 16
4.1 Operating voltages 16
4.2 Rail-to-rail input 16
4.3 Rail-to-rail output 16
4.4 Input offset voltage drift over temperature 16
4.5 Long-term input offset voltage drift 17
4.6 Initialization time 19
4.7 PCB layouts 19
4.8 Macromodel 20
5 Package information 21
5.1 SC70-5 package information 22
5.2 DFN8 2×2 package information 23
5.3 MiniSO-8 package information 24
5.4 QFN16 3x3 package information 25
6 Revision history 27

1 Pin connections

Figure 1. Pin connections (top view)

1. The exposed pads of the QFN16 3×3 can be connected to VCC- or left floating.

2

Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	6	V
$V_{\text {id }}$	Differential input voltage ${ }^{(2)}$	$\pm \mathrm{V}_{\mathrm{CC}}$	
$V_{\text {in }}$	Input voltage ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CC}-}-0.2$ to $\mathrm{V}_{\mathrm{CC}+}+0.2$	
1 in	Input current ${ }^{(4)}$	10	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction-to-ambient ${ }^{(5)(6)}$ SC70-5 DFN8 2x2 MiniSO8 QFN16 3x3	$\begin{gathered} 205 \\ 120 \\ 190 \\ 45 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thic }}$	Thermal resistance junction-to-case DFN8 2x2	33	
T_{j}	Maximum junction temperature	150	${ }^{\circ} \mathrm{C}$
ESD	HBM: human body model ${ }^{(7)}$	4	kV
	MM: machine model for OA1MPA ${ }^{(8)}$	150	V
	MM: machine model for OA2MPA ${ }^{(8)}$	200	
	MM: machine model for OA4MPA ${ }^{(8)}$	300	
	CDM: charged device model except MiniSO8 ${ }^{(9)}$	1.5	kV
	CDM: charged device model for MiniSO8 ${ }^{(9)}$	1.3	
	Latch-up immunity	200	mA

1. All voltage values, except the differential voltage are with respect to the network ground terminal.
2. The differential voltage is a non-inverting input terminal with respect to the inverting input terminal. The OA2MPA and OA4MPA devices include an internal differential voltage limiter that clamps internal differential voltage at 0.5 V .
3. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {in }}$ must not exceed $6 \mathrm{~V}, \mathrm{~V}_{\text {in }}$ must not exceed 6 V .
4. Input current must be limited by a resistor in series with the inputs.
5. Short-circuits can cause excessive heating and destructive dissipation
6. $R_{\text {th }}$ are typical values.
7. Human body model: 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω), done for all couples of pin combinations with other pins floating
9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	1.5 to 5.5	V
$\mathrm{~V}_{\mathrm{icm}}$	Common mode input voltage range	$\mathrm{V}_{\mathrm{CC}-}-0.1$ to $\mathrm{V}_{\mathrm{CC}+}+0.1$	
$\mathrm{~T}_{\text {oper }}$	Operating free air temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$

3 Electrical characteristics

$\mathrm{V}_{\mathrm{CC}+}=1.8 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}=25^{\circ} \mathrm{C}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{CC}} / 2$ (unless otherwise specified)

Table 4. Electrical characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
DC performance						
$\mathrm{V}_{\text {io }}$	Input offset voltage$\left(\mathrm{V}_{\mathrm{icm}}=0 \mathrm{~V}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$			200	$\mu \mathrm{V}$
		$-40^{\circ} \mathrm{C}<\mathrm{T}<85{ }^{\circ} \mathrm{C}$			850	
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			1200	
$\Delta \mathrm{V}_{\text {io }} / \Delta \mathrm{T}$	Input offset voltage drift	$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}^{(1)}$			10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {io }}$	Input offset current$\left(\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} / 2\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$		1	$10^{(2)}$	pA
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$		1	$300^{(2)}$	
$\mathrm{l}_{\text {ib }}$	Input bias current ($\left.\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} / 2\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$		1	$10^{(2)}$	
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$		1	$300^{(2)}$	
	Common mode rejection ratio	$\mathrm{T}=25^{\circ} \mathrm{C}$	69	88		dB
	$\begin{aligned} & \mathrm{V}_{\text {icm }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega \end{aligned}$	$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	61			
A_{vd}	Large signal voltage gain$\mathrm{V}_{\text {out }}=0.5 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$	95			
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	85			
V_{OH}	High level output voltage$\left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{out}}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$			75	mV
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			80	
$\mathrm{V}_{\text {OL }}$	Low level output voltage	$\mathrm{T}=25^{\circ} \mathrm{C}$			40	
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			60	
$\mathrm{I}_{\text {out }}$	$\mathrm{I}_{\text {sink }}\left(\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$	6	12		mA
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	4			
	$\mathrm{I}_{\text {source }}\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$	5	7		
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	3			
$I_{C C}$	Supply current (per channel, $V_{\text {out }}=V_{C C} / 2, R_{L}>1 M \Omega$	$\mathrm{T}=25^{\circ} \mathrm{C}$		9	14	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			16	
AC performance						
GBP	Gain bandwidth product	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	100	120		kHz
F_{u}	Unity gain frequency			100		
F_{m}	Phase margin			45		Degrees
G_{m}	Gain margin			19		dB

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
SR	Slew rate ${ }^{(3)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V} \end{aligned}$		0.04		$\mathrm{V} / \mu \mathrm{s}$
e_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$		100		$\frac{n V}{\sqrt{H z}}$
		$\mathrm{f}=10 \mathrm{kHz}$		96		
$\mathrm{t}_{\text {init }}$	Initialization time ${ }^{(4)}$	$\mathrm{T}=25^{\circ} \mathrm{C}$			5	ms
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			60	

1. See Section 4.4: Input offset voltage drift over temperature.
2. Guaranteed by characterization.
3. Slew rate value is calculated as the average between positive and negative slew rates.
4. Initialization time is defined as the delay after power-up to guarantee operation within specified performances. Guaranteed by design. See Section 4.6: Initialization time.
$\mathrm{V}_{\mathrm{CC}+}=3.3 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}=25^{\circ} \mathrm{C}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{CC}} / 2$ (unless otherwise specified)

Table 5. Electrical characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
DC performance						
$\mathrm{V}_{\text {io }}$	Input offset voltage	$\mathrm{T}=25^{\circ} \mathrm{C}$			200	$\mu \mathrm{V}$
		$-40^{\circ} \mathrm{C}<\mathrm{T}<85^{\circ} \mathrm{C}$			850	
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			1200	
$\Delta \mathrm{V}_{\text {io }} / \Delta \mathrm{T}$	Input offset voltage drift	$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}^{(1)}$			10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {io }}$	Long-term input offset voltage drift	$\mathrm{T}=25^{\circ} \mathrm{C}^{(2)}$		0.3		$\frac{\mu \mathrm{V}}{\sqrt{\text { month }}}$
$\mathrm{I}_{\text {io }}$	Input offset current$\left(V_{\text {out }}=V_{C C} / 2\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$		1	$10^{(3)}$	pA
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$		1	300 ${ }^{(3)}$	
$\mathrm{l}_{\text {ib }}$	Input bias current ($\left.\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} / 2\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$		1	$10^{(3)}$	
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$		1	$300^{(3)}$	
CMR	Common mode rejection ratio $20 \log \left(\Delta \mathrm{~V}_{\mathrm{icm}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$ $\mathrm{V}_{\mathrm{icm}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{out}}=\mathrm{V}_{\mathrm{CC}} / 2$, $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$	$\mathrm{T}=25^{\circ} \mathrm{C}$	80	100		dB
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	69			
A_{vd}	Large signal voltage gain $\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$	95			
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	85			
V_{OH}	High level output voltage$\left(V_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{out}}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$			75	mV
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			80	
V_{OL}	Low level output voltage	$\mathrm{T}=25^{\circ} \mathrm{C}$			40	
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			60	
$\mathrm{I}_{\text {out }}$	$\mathrm{I}_{\text {sink }}\left(\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$	20	34		mA
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	15			
	$\mathrm{I}_{\text {source }}\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$	20	26		
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	15			
$I_{\text {cc }}$	Supply current (per channel,$\left.V_{\text {out }}=V_{C C} / 2, R_{L}>1 M \Omega\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$		9	14	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			16	

AC performance

GBP	Gain bandwidth product	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	100	120	kHz
F_{u}	Unity gain frequency			100	
F_{m}	Phase margin			45	Degrees
G_{m}	Gain margin			19	dB
SR	Slew rate ${ }^{(4)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V} \end{aligned}$		0.05	$\mathrm{V} / \mathrm{\mu s}$

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
e_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$		100		$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$
		$\mathrm{f}=10 \mathrm{kHz}$		96		
$\mathrm{t}_{\text {init }}$	Initialization time ${ }^{(5)}$	$\mathrm{T}=25^{\circ} \mathrm{C}$			5	ms
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			50	

1. See Section 4.4: Input offset voltage drift over temperature.
2. Typical value is based on the $\mathrm{V}_{\text {io }}$ drift observed after 1000 h at $125^{\circ} \mathrm{C}$ extrapolated to $25^{\circ} \mathrm{C}$ using the Arrhenius law and assuming an activation energy of 0.7 eV . The operational amplifier is aged in follower mode configuration. See Section 4.5: Long-term input offset voltage drift.
3. Guaranteed by characterization.
4. Slew rate value is calculated as the average between positive and negative slew rates.
5. Initialization time is defined as the delay after power-up which guarantees operation within specified performances. Guaranteed by design. See Section 4.6: Initialization time.
$\mathrm{V}_{\mathrm{CC}+}=5 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}=25^{\circ} \mathrm{C}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{CC}} / 2$ (unless otherwise specified)

Table 6. Electrical characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
DC performance						
$V_{\text {io }}$	Input offset voltage	$\mathrm{T}=25^{\circ} \mathrm{C}$			200	$\mu \mathrm{V}$
		$-40^{\circ} \mathrm{C}<\mathrm{T}<85^{\circ} \mathrm{C}$			850	
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			1200	
$\Delta \mathrm{V}_{\text {io }} / \Delta \mathrm{T}$	Input offset voltage drift	$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}^{(1)}$			10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {io }}$	Long-term input offset voltage drift	$\mathrm{T}=25{ }^{\circ} \mathrm{C}{ }^{(2)}$		0.7		$\frac{\mu \mathrm{V}}{\sqrt{\text { month }}}$
$\mathrm{l}_{\text {io }}$	Input offset current$\left(\mathrm{V}_{\mathrm{out}}=\mathrm{V}_{\mathrm{CC}} / 2\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$		1	$10^{(3)}$	pA
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$		1	300 ${ }^{(3)}$	
$\mathrm{I}_{\text {ib }}$	Input bias current$\left(V_{\text {out }}=V_{C C} / 2\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$		1	$10^{(3)}$	
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$		1	$300{ }^{(3)}$	
CMR	Common mode rejection ratio $20 \log \left(\Delta V_{\mathrm{icm}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$ $\mathrm{V}_{\mathrm{icm}}=0 \mathrm{~V}$ to V_{CC}, $V_{\text {out }}=V_{C C} / 2, R_{L}>1 \mathrm{M} \Omega$	$\mathrm{T}=25^{\circ} \mathrm{C}$	74	94		dB
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	73			
	Supply voltage rejection ratio	$\mathrm{T}=25^{\circ} \mathrm{C}$	71	90		
SVR	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {ic }}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega \end{aligned}$	$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	71			
A_{vd}	Large signal voltage gain$\mathrm{V}_{\text {out }}=0.5 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$	95			
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	85			
EMIRR	EMI rejection ratio EMIRR = $20 \log$ $\left(V_{\text {RFpeak }} / \Delta V_{i o}\right)$	$\mathrm{V}_{\mathrm{RF}}=100 \mathrm{mVRF}$ peak, $\mathrm{f}=400 \mathrm{MHz}$		$38{ }^{(4)}$		
		$\mathrm{V}_{\text {RF }}=100 \mathrm{mVRFpeak}, \mathrm{f}=900 \mathrm{MHz}$		$50^{(4)}$		
		$\mathrm{V}_{\text {RF }}=100$ mVRFpeak, $\mathrm{f}=1800 \mathrm{MHz}$		$60^{(4)}$		
		$\mathrm{V}_{\text {RF }}=100 \mathrm{mVRFpeak}, \mathrm{f}=2400 \mathrm{MHz}$		$63{ }^{(4)}$		
V_{OH}	High level output voltage$\left(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{Out}}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$			75	mV
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			80	
V_{OL}	Low level output voltage	$\mathrm{T}=25^{\circ} \mathrm{C}$			40	
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			60	
$\mathrm{I}_{\text {out }}$	$\mathrm{I}_{\text {sink }}\left(\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$	35	56		mA
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	20			
	$\mathrm{I}_{\text {source }}\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)$	$\mathrm{T}=25^{\circ} \mathrm{C}$	35	45		
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$	20			

Table 6. Electrical characteristics (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{Cc}	Supply current (per channel, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$)	$\mathrm{T}=25^{\circ} \mathrm{C}$		10	14	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			16	

AC performance

GBP	Gain bandwidth product	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	110	150		kHz
F_{u}	Unity gain frequency			120		
F_{m}	Phase margin			45		Degrees
G_{m}	Gain margin			19		dB
SR	Slew rate ${ }^{(5)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V} \end{aligned}$		0.06		$\mathrm{V} / \mu \mathrm{s}$
$\int \mathrm{e}_{\mathrm{n}}$	Low-frequency peak-to-peak input noise	Bandwidth: $\mathrm{f}=0.1$ to 10 Hz		10		$\mu \mathrm{V}_{\mathrm{pp}}$
e_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$		100		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
		$\mathrm{f}=10 \mathrm{kHz}$		96		
THD+N	Total harmonic distortion + noise	$\begin{aligned} & \mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{CL}}=1, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{icm}}=\left(\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}\right) / 2, \\ & \mathrm{BW}=22 \mathrm{kHz}, \mathrm{~V}_{\mathrm{out}}=0.5 \mathrm{~V}_{\mathrm{pp}} \end{aligned}$		0.008		\%
$t_{\text {init }}$	Initialization time ${ }^{(6)}$	$\mathrm{T}=25^{\circ} \mathrm{C}$			5	ms
		$-40^{\circ} \mathrm{C}<\mathrm{T}<125^{\circ} \mathrm{C}$			50	

1. See Section 4.4: Input offset voltage drift over temperature.
2. Typical value is based on the $V_{i 0}$ drift observed after 1000 h at $125^{\circ} \mathrm{C}$ extrapolated to $25^{\circ} \mathrm{C}$ using the Arrhenius law and assuming an activation energy of 0.7 eV . The operational amplifier is aged in follower mode configuration. See Section 4.5: Long-term input offset voltage drift.
3. Guaranteed by characterization.
4. Tested on SC70-5 package.
5. Slew rate value is calculated as the average between positive and negative slew rates.
6. Initialization time is defined as the delay after power-up to guarantee operation within specified performances. Guaranteed by design. See Section 4.6: Initialization time.

Figure 2. Supply current vs. supply voltage at $\mathrm{V}_{\mathrm{icm}}=\mathrm{V}_{\mathrm{CC}} / 2$

Figure 4. Input offset voltage distribution at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=\mathrm{V}_{\mathrm{CC}} / 2$

Figure 6. Input offset voltage vs. input common mode voltage

Figure 3. Input offset voltage distribution at

Figure 5. Input offset voltage temperature coefficient distribution

Figure 7. Input offset voltage vs. temperature

Figure 8. Output current vs. output voltage at $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$

Figure 10. Output current vs. supply voltage

Figure 9. Output current vs. output voltage at
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Figure 11. Bode diagram at $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$

Figure 13. Closed-loop gain diagram vs. capacitive load

Figure 14. Positive slew rate

Figure 15. Negative slew rate

Figure 16. Slew rate vs. supply voltage

Figure 18. 0.1 Hz to 10 Hz noise

Figure 17. Noise vs. frequency

Figure 19. THD+N vs. frequency

Figure 20. THD+N vs. output voltage

Figure 21. Output impedance vs. frequency in closed-loop configuration

4 Application information

4.1 Operating voltages

The OA1MPA, OA2MPA, and OA4MPA series of devices can operate from 1.5 V to 5.5 V . The parameters are fully specified for $1.8 \mathrm{~V}, 3.3 \mathrm{~V}$, and 5 V power supplies. However, they are very stable in the full V_{CC} range and several characterization curves show OA1MPA, OA2MPA, and OA4MPA device characteristics at 1.5 V . In addition, the main specifications are guaranteed in the extended temperature range from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

4.2 Rail-to-rail input

The OA1MPA, OA2MPA, and OA4MPA devices have a rail-to-rail input, and the input common mode range is extended from $\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}+}+0.1 \mathrm{~V}$.

4.3 Rail-to-rail output

The output levels of the OA1MPA, OA2MPA, and OA4MPA operational amplifiers can go close to the rails: to a maximum of 40 mV below the upper rail and to a maximum of 75 mV above the lower rail when a $10 \mathrm{k} \Omega$ resistive load is connected to $\mathrm{V}_{\mathrm{Cc}} / 2$.

4.4 Input offset voltage drift over temperature

The maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at $25^{\circ} \mathrm{C}$. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at $25^{\circ} \mathrm{C}$ can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using Equation 1.

Equation 1

$\frac{\Delta \mathrm{V}_{\text {io }}}{\Delta \mathrm{T}}=\max \left|\frac{\mathrm{V}_{\mathrm{io}}(\mathrm{T})-\mathrm{V}_{\mathrm{io}}\left(25^{\circ} \mathrm{C}\right)}{\mathrm{T}-25^{\circ} \mathrm{C}}\right|$
with $\mathrm{T}=-40^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.
The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.33.

4.5 Long-term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.
The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2.

Equation 2

$$
A_{F V}=e^{\beta \cdot\left(V_{S}-V_{U}\right)}
$$

Where:
$A_{F V}$ is the voltage acceleration factor
β is the voltage acceleration constant in $1 / \mathrm{V}$, constant technology parameter ($\beta=1$)
V_{S} is the stress voltage used for the accelerated test
V_{U} is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.

Equation 3

$$
A_{F T}=e^{\frac{E_{a}}{k} \cdot\left(\frac{1}{T_{U}}-\frac{1}{T_{s}}\right)}
$$

Where:
$A_{F T}$ is the temperature acceleration factor
E_{a} is the activation energy of the technology based on the failure rate
k is the Boltzmann constant ($8.6173 \times 10^{-5} \mathrm{eV} . \mathrm{K}^{-1}$)
T_{U} is the temperature of the die when V_{U} is used (K)
T_{S} is the temperature of the die under temperature stress (K)
The final acceleration factor, A_{F}, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4).

Equation 4

$$
A_{F}=A_{F T} \times A_{F V}
$$

A_{F} is calculated using the temperature and voltage defined in the mission profile of the product. The A_{F} value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

Months $=A_{F} \times 1000 \mathrm{~h} \times 12$ months $/(24 \mathrm{~h} \times 365.25$ days $)$
To evaluate the op amp reliability, a follower stress condition is used where $V_{C C}$ is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).

The $\mathrm{V}_{\text {io }}$ drift (in $\mu \mathrm{V}$) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6).

Equation 6

$$
\mathrm{V}_{\mathrm{Cc}}=\max \mathrm{V}_{\mathrm{op}} \text { with } \mathrm{V}_{\mathrm{icm}}=\mathrm{V}_{\mathrm{Cc}} / 2
$$

The long term drift parameter $\left(\Delta \mathrm{V}_{\mathrm{io}}\right)$, estimating the reliability performance of the product, is obtained using the ratio of the V_{io} (input offset voltage value) drift over the square root of the calculated number of months (Equation 7).

Equation 7

$\Delta V_{i o}=\frac{V_{\text {io }} \text { drift }}{\sqrt{(\text { months })}}$
where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

4.6 Initialization time

The OA1MPA, OA2MPA, and OA4MPA series of devices use a proprietary trimming topology that is initiated at each device power-up and allows excellent $V_{i o}$ performance to be achieved. The initialization time is defined as the delay after power-up which guarantees operation within specified performances. During this period, the current consumption (I $I_{C C}$) and the input offset voltage ($V_{i 0}$) can be different to the typical ones.

Figure 22. Initialization phase

The initialization time is V_{Cc} and temperature dependent. Table 7 sums up the measurement results for different supply voltages and for temperatures varying from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Table 7. Initialization time measurement results

$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Temperature: -40 ${ }^{\circ} \mathrm{C}$		Temperature: $25{ }^{\circ} \mathrm{C}$		Temperature: $125{ }^{\circ} \mathrm{C}$	
	$\mathrm{T}_{\text {init }}(\mathrm{ms})$	$I_{\text {cc }}$ phase 1 (mA)	$\mathrm{T}_{\text {init }}(\mathrm{ms})$	$I_{\text {cc }}$ phase 1 (mA)	$\mathrm{T}_{\text {init }}(\mathrm{ms})$	Icc phase 1 (mA)
1.8	37	0.33	3.2	0.40	0.35	0.46
3.3	2.9	1.4	0.95	1.3	0.34	1.2
5	2.4	3.2	0.85	2.4	0.31	2.9

4.7 PCB layouts

For correct operation, it is advised to add a 10 nF decoupling capacitors as close as possible to the power supply pins.

4.8 Macromodel

Accurate macromodels of the OA1MPA, OA2MPA, and OA4MPA devices are available on the STMicroelectronics' website at www.st.com. These model are a trade-off between accuracy and complexity (that is, time simulation) of the OA1MPA, OA2MPA, and OA4MPA op amp. They emulate the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right op amp, but they do not replace on-board measurements.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

5.1 SC70-5 package information

Figure 23. SC70-5 package mechanical drawing

Table 8. SC70-5 package mechanical data

Symbol	Dimensions					
	Millimeters			Max.	Min.	Typ.
	Min.	Typ.	Max.			
A	0.80		1.10	0.032		0.043
A1	0		0.10			0.004
A2	0.80	0.90	1.00	0.032	0.035	0.039
b	0.15		0.30	0.006		0.012
c	0.10		0.22	0.004		0.009
D	1.80	2.00	2.20	0.071	0.079	0.087
E	1.80	2.10	2.40	0.071	0.083	0.094
E1	1.15	1.25	1.35	0.045	0.049	0.053
e		0.65			0.025	
e1		1.30			0.051	
L	0.26	0.36	0.46	0.010	0.014	0.018
<	0°		8°	$0{ }^{\circ}$		8°

5.2 DFN8 2x2 package information

Figure 24. DFN8 2×2 package mechanical drawing

Table 9. DFN8 2×2 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	0.02	0.05	0.000	0.001	0.002
b	0.15	0.20	0.25	0.006	0.008	0.010
D		2.00			0.079	
E		2.00			0.079	
e		0.50			0.020	
L	0.045	0.55	0.65	0.018	0.022	0.026
N		8			8	

5.3 MiniSO-8 package information

Figure 25. MiniSO-8 package mechanical drawing

Table 10. MiniSO-8 package mechanical data

Ref.	Dimensions					
	Millimeters			Max.	Min.	Typ.
	Min.	Typ.	Max.	Max.		
A			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
c	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
E	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
e		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	$0{ }^{\circ}$		8°	$0{ }^{\circ}$		8°
ccc			0.10			0.004

5.4 QFN16 3x3 package information

Figure 26. QFN16 3x3 package mechanical drawing

Table 11. QFN16 $3 \times 3 \mathrm{~mm}$ package mechanical data (pitch 0.5 mm)

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.80	0.90	1.00	0.031	0.035	0.039
A1	0		0.05	0		0.002
A3		0.20			0.008	
b	0.18		0.30	0.007		0.012
D	2.90	3.00	3.10	0.114	0.118	0.122
D2	1.50		1.80	0.059		0.071
E	2.90	3.00	3.10	0.114	0.118	0.122
E2	1.50		1.80	0.059		0.071
e		0.50			0.020	
L	0.30		0.50	0.012		0.020

Figure 27. QFN16 3x3 footprint recommendation

QFN16_3x3_V1_footprint_7509604_C

6 Revision history

Table 12. Document revision history

Date	Revision	Changes
$28-$ Feb-2014	1	Initial release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE ANDIOR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, ANDIOR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
NCV33072ADR2G LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7

