

OA1ZHA, OA2ZHA, OA4ZHA

High precision 5 μ V zero drift, low-power op amps

Datasheet - production data

Features

- Very high accuracy and stability: offset voltage 5 μV max at 25 °C, 8 μV over full temperature range (-40 °C to 125 °C)
- Rail-to-rail input and output
- Low supply voltage: 1.8 5.5 V
- Low power consumption: 40 µA max. at 5 V
- Gain bandwidth product: 400 kHz
- High tolerance to ESD: 4 kV HBM
- Extended temperature range: -40 to 125 °C
- Micro-packages: SC70-5, DFN8 2x2, and QFN16 3x3

Benefits

- High precision operational amplifiers (op amps) with no need for calibration
- Accuracy virtually unaffected by temperature change

Applications

- Wearable
- Fitness and healthcare
- Medical instrumentation

Description

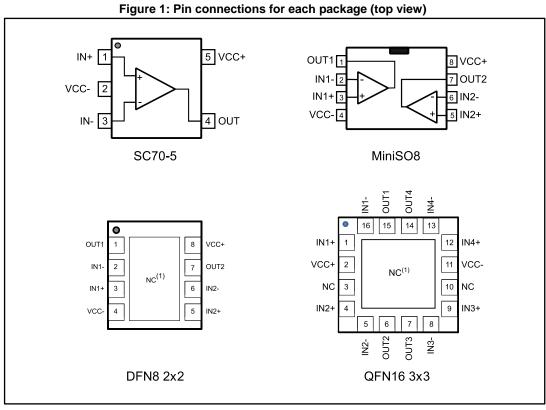
The OA1ZHA, OA2ZHA, OA4ZHA series of lowpower, high-precision op amps offers very low input offset voltages with virtually zero drift.

OA1ZHA, OA2ZHA, OA4ZHA are respectively the single, dual and quad op amp versions, with pinout compatible with industry standards.

The OA1ZHA, OA2ZHA, OA4ZHA series offers rail-to-rail input and output, excellent speed/power consumption ratio, and 400 kHz gain bandwidth product, while consuming less than 40 μ A at 5 V. All devices also feature an ultra-low input bias current.

The OA1ZHA, OA2ZHA, OA4ZHA family is the ideal choice for wearable, fitness and healthcare applications.

DocID025994 Rev 3


This is information on a product in full production.

Contents

Со	ntents			
1	Package	e pin conr	nections	3
2	Absolute	e maximu	m ratings and operating conditions	4
3			eristics	
4			eristic curves	
5			nation	
•	5.1		theory	
	011	5.1.1	Time domain	
		5.1.2	Frequency domain	
	5.2	Operating	y voltages	19
	5.3	Input pin	voltage ranges	19
	5.4	Rail-to-ra	il input	19
	5.5	Input offs	et voltage drift over temperature	20
	5.6	Rail-to-ra	il output	20
	5.7	Capacitiv	e load	21
	5.8	PCB layo	ut recommendations	21
	5.9	Optimized	d application recommendation	22
	5.10	EMI rejec	tion ration (EMIRR)	22
	5.11	Applicatio	on examples	23
		5.11.1	Oxygen sensor	23
		5.11.2	Precision instrumentation amplifier	
•	_ .	5.11.3	Low-side current sensing	
6	•		ion	
	6.1	SC70-5 (or SOT323-5) package information	27
	6.2		package information	
	6.3	DFN8 2x2	2 package information	29
	6.4	QFN16 3	x3 package information	31
7	Ordering	g informa	tion	33
8	Revisior	history .		34

1 Package pin connections

1. The exposed pads of the DFN8 2x2 and the QFN16 3x3 can be connected to VCC- or left floating.

2 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)								
Symbol	Parameter	Value	Unit					
Vcc	Supply voltage ⁽¹⁾	6						
Vid	Differential input voltage ⁽²⁾		±Vcc	V				
Vin	Input voltage ⁽³⁾		(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2					
lin	Input current ⁽⁴⁾		10	mA				
T _{stg}	Storage temperature	-65 to 150	*0					
Tj	Maximum junction temperature	150	- °C					
		SC70-5	205					
Р	Thermel registeres junction to embient (5)(6)	MiniSO8	190	°C/W				
R _{thja}	Thermal resistance junction-to-ambient ⁽⁵⁾⁽⁶⁾	DFN8 2x2	57					
		QFN16 3x3	39					
	HBM: human body model ⁽⁷⁾		4	kV				
ESD	MM: machine model ⁽⁸⁾	OA1ZHA only	300	V				
E3D	CDM: charged dovice model		1.5	kV				
	CDM: charged device model	QFN16 3x3	TBD	ĸv				
	Latch-up immunity		200	mA				

Notes:

⁽¹⁾All voltage values, except differential voltage, are with respect to network ground terminal.

⁽²⁾The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.

⁽³⁾V_{CC} - V_{in} must not exceed 6 V, V_{in} must not exceed 6 V.

⁽⁴⁾Input current must be limited by a resistor in series with the inputs.

⁽⁵⁾R_{th} are typical values.

⁽⁶⁾Short-circuits can cause excessive heating and destructive dissipation.

 $^{(7)}$ Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

⁽⁸⁾Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

Table	2:	Operati	na con	ditions
IUNIC	_	operation	ing oon	annonio

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	1.8 to 5.5	V
Vicm	Common mode input voltage range	(Vcc-) - 0.1 to (Vcc+) + 0.1	v
T _{oper}	Operating free air temperature range	-40 to 125	°C

3 Electrical characteristics

Table 3: Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 k Ω connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		DC performance					
		T = 25 °C		1	5		
Vio	Input offset voltage	-40 °C < T < 125 °C			8	μV	
ΔV _{io} /ΔT	Input offset voltage drift (1)	-40 °C < T < 125 °C		10	30	nV/°C	
	Input bias current	T = 25 °C		50	200 (2)		
lib	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			300 ⁽²⁾	- 0	
	Input offset current	T = 25 °C		100	400 (2)	рА	
l _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			600 ⁽²⁾		
	Common mode rejection	T = 25 °C	110	122			
CMR	ratio, 20 log ($\Delta V_{icm}/\Delta V_{io}$), $V_{ic} = 0 V$ to V_{CC} , $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$	-40 °C < T < 125 °C	110			dB	
•	Large signal voltage gain,	T = 25 °C	118	135			
A _{vd}	$V_{out} = 0.5 \text{ V to} (V_{CC} - 0.5 \text{ V})$	-40 °C < T < 125 °C	110				
V		T = 25 °C			30		
Vон	High-level output voltage	-40 °C < T < 125 °C			70	mV	
N/	Low-level output voltage	T = 25 °C			30		
Vol		-40 °C < T < 125 °C			70		
	Isink (Vout = Vcc)	T = 25 °C	7	8		mA	
		-40 °C < T < 125 °C	6				
lout	(1)	T = 25 °C	5	7			
	I_{source} ($V_{out} = 0$ V)	-40 °C < T < 125 °C	4				
	Supply current	T = 25 °C		28	40		
lcc	(per amplifier), V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40 °C < T < 125 °C			40	μA	
		AC performance					
GBP	Gain bandwidth product			400			
Fu	Unity gain frequency			300		kHz	
φm	Phase margin	R_L = 10 k Ω , C_L = 100 pF		55		Degrees	
Gm	Gain margin			17		dB	
SR	Slew rate ⁽³⁾			0.17		V/µs	
ts	Setting time	To 0.1 %, V _{in} = 1 Vp-p, R_L = 10 k Ω , C_L = 100 pF		50		μs	
A	Equivalent input noise	f = 1 kHz		60		nV/√Hz	
en	voltage	f = 10 kHz		60			
Cs	Channel separation	f = 100 Hz		120		dB	
t init	Initialization time	T = 25 °C		50		lie	
unit		-40 °C < T < 125 °C		100		μs	
57		DocID025994 Rev 3				5/35	

Electrical characteristics

Notes:

⁽¹⁾See Section 5.5: "Input offset voltage drift over temperature". Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.

⁽²⁾Guaranteed by design

⁽³⁾Slew rate value is calculated as the average between positive and negative slew rates.

and RL = 10 k Ω connected to VCC/2 (unless otherwise specified)										
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
		DC performance								
<i>\</i> /		T = 25 °C		1	5					
Vio	Input offset voltage	-40 °C < T < 125 °C			8	μV				
$\Delta V_{io}/\Delta T$	Input offset voltage drift (1)	-40 °C < T < 125 °C		10	30	nV/°C				
	Input bias current	T = 25 °C		60	200 (2)					
l _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			300 ⁽²⁾	-				
L	Input offset current	T = 25 °C		120	400 (2)	pА				
lio	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			600 ⁽²⁾					
	Common mode rejection	T = 25 °C	115	128						
CMR	ratio, 20 log ($\Delta V_{icm}/\Delta V_{io}$), $V_{ic} = 0 V$ to V_{CC} , $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$	-40 °C < T < 125 °C	115			dB				
•	Large signal voltage gain,	T = 25 °C	118	135						
A _{vd}	$V_{out} = 0.5 V \text{ to } (V_{CC} - 0.5 V)$	-40 °C < T < 125 °C	110							
N/	High-level output voltage	T = 25 °C			30	mV				
Vон		-40 °C < T < 125 °C			70					
M	Low-level output voltage	T = 25 °C			30					
V _{OL}		-40 °C < T < 125 °C			70					
	$1 \dots (1/1 \dots 1/100)$	T = 25 °C	15	18		mA				
	Isink (Vout = VCC)	-40 °C < T < 125 °C	12							
lout		T = 25 °C	14	16		mA				
	Isource (Vout = 0 V)	-40 °C < T < 125 °C	10							
	Supply current	T = 25 °C		29	40					
Icc	(per amplifier), V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40 °C < T < 125 °C			40	μA				
		AC performance								
GBP	Gain bandwidth product			400		kHz				
Fu	Unity gain frequency			300		KI IZ				
φm	Phase margin	R_L = 10 k Ω , C_L = 100 pF		56		Degrees				
Gm	Gain margin			19		dB				
SR	Slew rate ⁽³⁾			0.19		V/µs				
ts	Setting time	To 0.1 %, V _{in} = 1 Vp-p, R _L = 10 $k\Omega$, C _L = 100 pF		50		μs				
0	Equivalent input noise	f = 1 kHz		40		nV/√Hz				
en	voltage	f = 10 kHz		40						
Cs	Channel separation	f = 100 Hz		120		dB				
t:	Initialization time	T = 25 °C		50		110				
t _{init}		-40 °C < T < 125 °C		100		μs				

Table 4: Electrical characteristics at VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C,
and RL = 10 k Ω connected to VCC/2 (unless otherwise specified)

Notes:

Electrical characteristics

OA1ZHA, OA2ZHA, OA4ZHA

⁽¹⁾See Section 5.5: "Input offset voltage drift over temperature". Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.

⁽²⁾Guaranteed by design

⁽³⁾Slew rate value is calculated as the average between positive and negative slew rates.

RL = 10 kΩ connected to VCC/2 (unless otherwise specified)									
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
		DC performance							
Vio	Input offect voltage	T = 25 °C		1	5				
Vio	Input offset voltage	-40 °C < T < 125 °C			8	μV			
$\Delta V_{io}/\Delta T$	Input offset voltage drift (1)	-40 °C < T < 125 °C		10	30	nV/°C			
L.	Input bias current	T = 25 °C		70	200 (2)				
l _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			300 ⁽²⁾	~^			
L	Input offset current	T = 25 °C		140	400 (2)	рА			
lio	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			600 ⁽²⁾				
	Common mode rejection	T = 25 °C	115	136					
CMR	ratio, 20 log (ΔV _{icm} /ΔV _{io}), V _{ic} = 0 V to V _{CC} , V _{out} = V _{CC} /2, R _L > 1 MΩ	-40 °C < T < 125 °C	115						
	Supply voltage rejection	T = 25 °C	120	140					
SVR	ratio, 20 log (ΔV _{CC} /ΔV _{io}), V _{CC} = 1.8 V to 5.5 V, V _{out} = V _{CC} /2, R _L > 1 MΩ	-40 °C < T < 125 °C	120			٩D			
	Large signal voltage gain,	T = 25 °C	120	135		dB			
A _{vd}	$V_{out} = 0.5 V \text{ to } (V_{CC} - 0.5 V)$	-40 °C < T < 125 °C	110						
		$V_{RF} = 100 \text{ mV}_{p}, \text{ f} = 400 \text{ MHz}$		84					
EMIRR	EMI rejection rate = -20 log (V _{RFpeak} /ΔV _{io})	$V_{RF} = 100 \text{ mV}_{p}, \text{ f} = 900 \text{ MHz}$		87					
(3)		$V_{RF} = 100 \text{ mV}_{p}, \text{ f} = 1800 \text{ MHz}$		90					
		V_{RF} = 100 mV _p , f = 2400 MHz		91					
.,		T = 25 °C			30				
Vон	High-level output voltage	-40 °C < T < 125 °C			70	1			
		T = 25 °C			30	mV			
V _{OL}	Low-level output voltage	-40 °C < T < 125 °C			70				
		T = 25 °C	15	18					
	Isink (Vout = VCC)	-40 °C < T < 125 °C	14						
lout		T = 25 °C	14	17		mA			
	I _{source} (V _{out} = 0 V)	-40 °C < T < 125 °C	12						
	Supply current	T = 25 °C		31	40				
lcc	(per amplifier), V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40 °C < T < 125 °C			40	μA			
		AC performance							
GBP	Gain bandwidth product			400		kHz			
Fu	Unity gain frequency			300					
φm	Phase margin	R_L = 10 k Ω , C_L = 100 pF		53		Degrees			
Gm	Gain margin			19		dB			
SR	Slew rate ⁽⁴⁾			0.19		V/µs			

Table 5: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 ° C, and RL = 10 k Ω connected to VCC/2 (unless otherwise specified)

9/35

Electrical characteristics

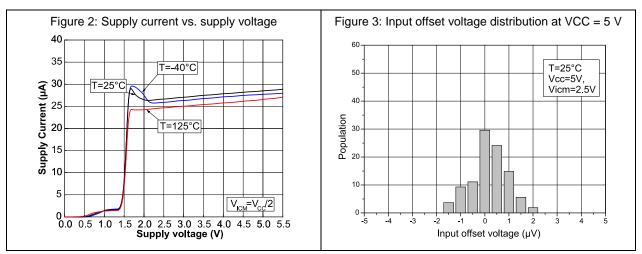
OA1ZHA, OA2ZHA, OA4ZHA

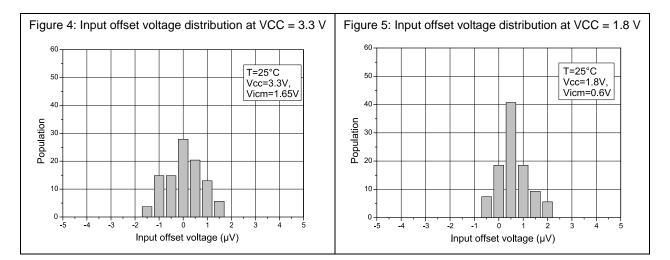
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
ts	Setting time	To 0.1 %, $V_{in} = 100 \text{ mVp-p}$, $R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		10		μs	
	Equivalent input	f = 1 kHz		37		nV/√Hz	
en	noise voltage	f = 10 kHz		37			
Cs	Channel separation	f = 100 Hz		120		dB	
.	Initialization time	T = 25 °C		50			
t _{init}	initialization time	-40 °C < T < 125 °C		100		μs	

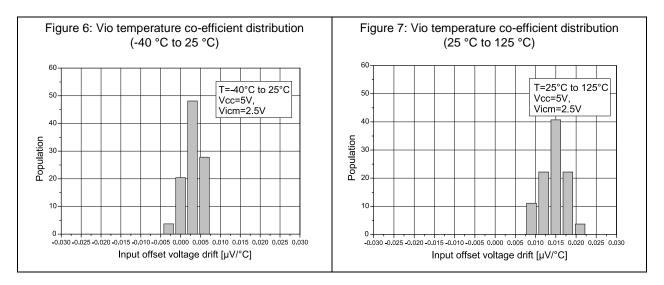
Notes:

⁽¹⁾See Section 5.5: "Input offset voltage drift over temperature". Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.

 $^{\rm (2)}\mbox{Guaranteed}$ by design

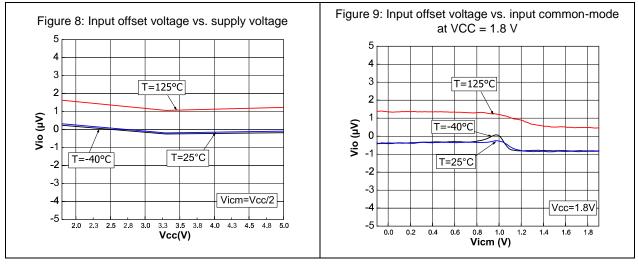

⁽³⁾Tested on SC70-5 package

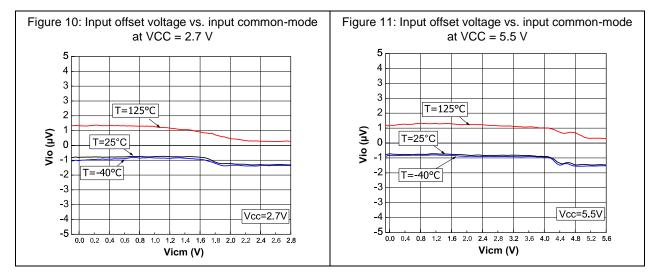

⁽⁴⁾Slew rate value is calculated as the average between positive and negative slew rates.

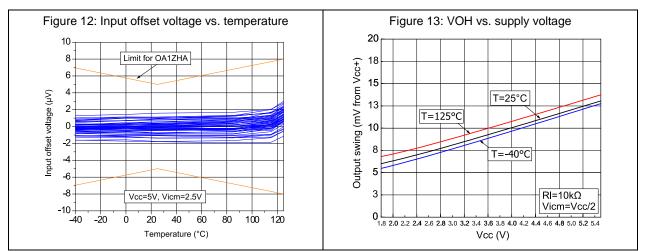


4

Electrical characteristic curves

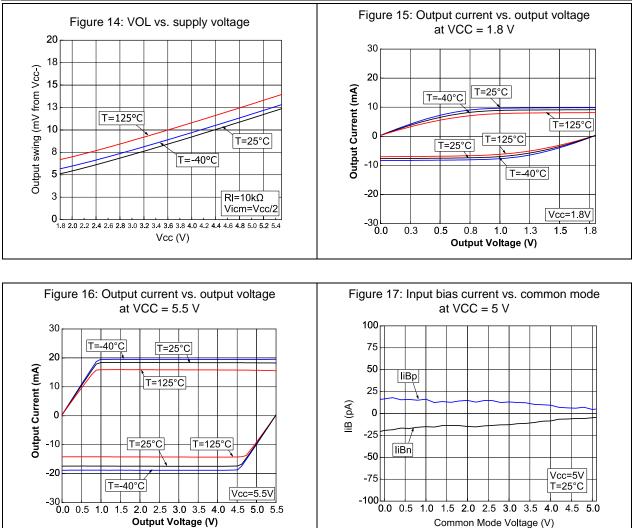


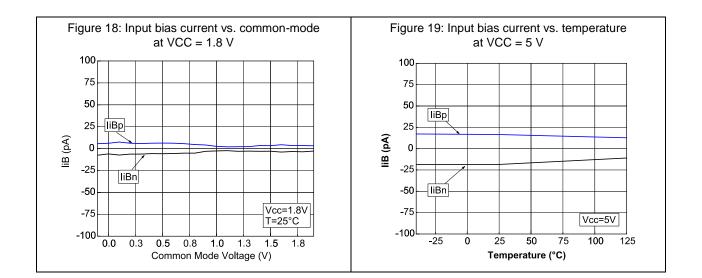




Electrical characteristic curves

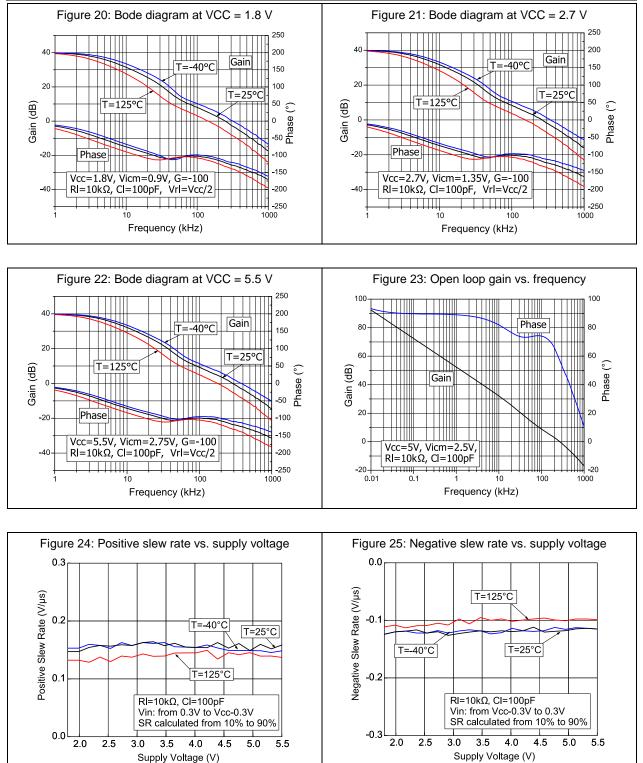
OA1ZHA, OA2ZHA, OA4ZHA

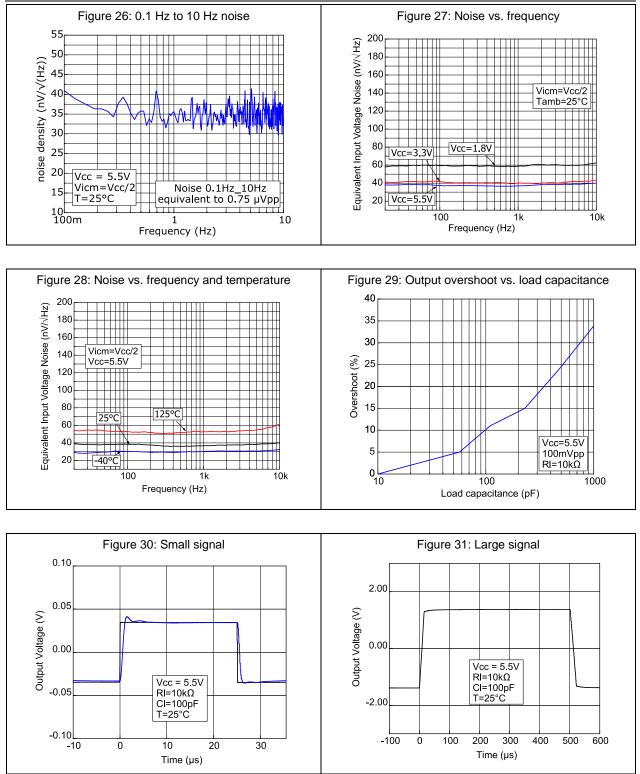

12/35



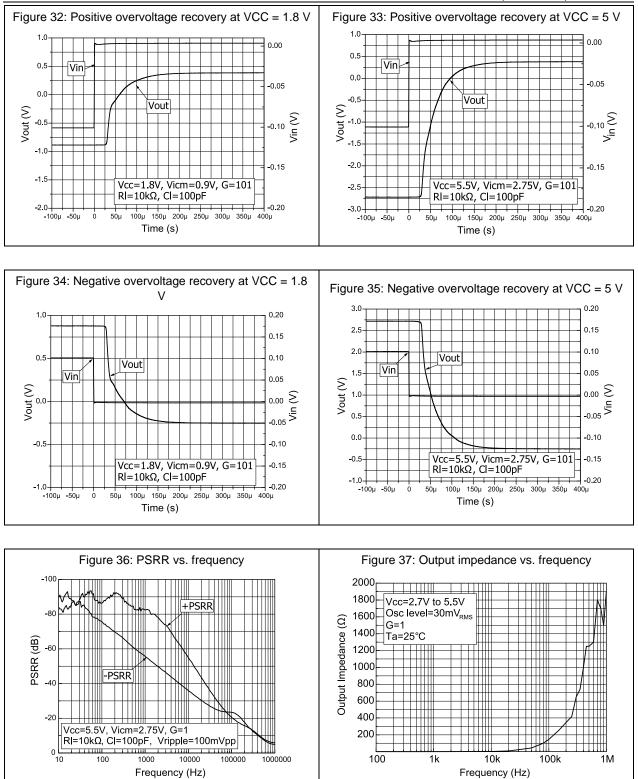
OA1ZHA, OA2ZHA, OA4ZHA

57


Electrical characteristic curves


OA1ZHA, OA2ZHA, OA4ZHA

Electrical characteristic curves


57

DocID025994 Rev 3

15/35

Electrical characteristic curves

OA1ZHA, OA2ZHA, OA4ZHA

16/35

5 Application information

5.1 Operation theory

The OA1ZHA, OA2ZHA and OA4ZHA are high precision CMOS op amp. They achieve a low offset drift and no 1/f noise thanks to their chopper architecture. Chopper-stabilized amps constantly correct low-frequency errors across the inputs of the amplifier.

Chopper-stabilized amplifiers can be explained with respect to:

- Time domain
- Frequency domain

5.1.1 Time domain

The basis of the chopper amplifier is realized in two steps. These steps are synchronized thanks to a clock running at 400 kHz.

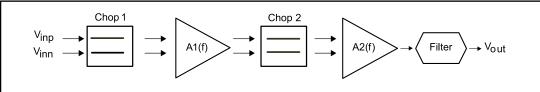
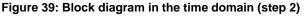
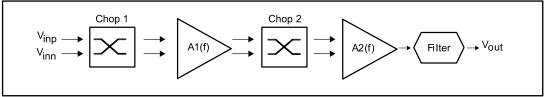




Figure 38: Block diagram in the time domain (step 1)

Figure 38: "Block diagram in the time domain (step 1)" shows step 1, the first clock cycle, where V_{io} is amplified in the normal way.

Figure 39: "Block diagram in the time domain (step 2)" shows step 2, the second clock cycle, where Chop1 and Chop2 swap paths. At this time, the V_{io} is amplified in a reverse way as compared to step 1.

At the end of these two steps, the average V_{io} is close to zero.

The A2(f) amplifier has a small impact on the V_{io} because the V_{io} is expressed as the input offset and is consequently divided by A1(f).

In the time domain, the offset part of the output signal before filtering is shown in *Figure 40: "Vio cancellation principle"*.

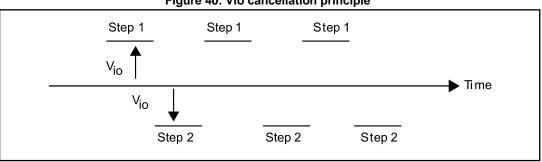


Figure 40: Vio cancellation principle

The low pass filter averages the output value resulting in the cancellation of the V_{io} offset.

The 1/f noise can be considered as an offset in low frequency and it is canceled like the $V_{\rm io},$ thanks to the chopper technique.

5.1.2 Frequency domain

The frequency domain gives a more accurate vision of chopper-stabilized amplifier architecture.

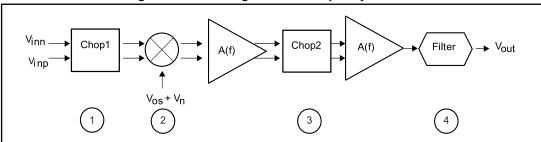


Figure 41: Block diagram in the frequency domain

The modulation technique transposes the signal to a higher frequency where there is no 1/f noise, and demodulate it back after amplification.

- 1. According to *Figure 41: "Block diagram in the frequency domain"*, the input signal V_{in} is modulated once (Chop1) so all the input signal is transposed to the high frequency domain.
- 2. The amplifier adds its own error (V_{io} (output offset voltage) + the noise V_n (1/f noise)) to this modulated signal.
- 3. This signal is then demodulated (Chop2), but since the noise and the offset are modulated only once, they are transposed to the high frequency, leaving the output signal of the amplifier without any offset and low frequency noise. Consequently, the input signal is amplified with a very low offset and 1/f noise.
- 4. To get rid of the high frequency part of the output signal (which is useless) a low pass filter is implemented.

To further suppress the remaining ripple down to a desired level, another low pass filter may be added externally on the output of the OA1ZHA, OA2ZHA and OA4ZHA device.

5.2 Operating voltages

OA1ZHA, OA2ZHA and OA4ZHA CMOS op amp can operate from 1.8 to 5.5 V. The parameters are fully specified for 1.8 V, 3.3 V, and 5 V power supplies. However, the parameters are very stable in the full ς_{XX} range and several characterization curves show the OA1ZHA, OA2ZHA and OA4ZHA op amp characteristics at 1.8 V and 5.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from - 40 to 125 ° C.

5.3 Input pin voltage ranges

OA1ZHA, OA2ZHA and OA4ZHA CMOS op amp can operate from 1.8 to 5.5 V. The parameters are fully specified for 1.8 V, 3.3 V, and have internal ESD diode protection on the inputs. These diodes are connected between the input and each supply rail to protect the input MOSFETs from electrical discharge.

If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive current can flow through them. Without limitation this over current can damage the device.

In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as described in *Figure 42: "Input current limitation"*.

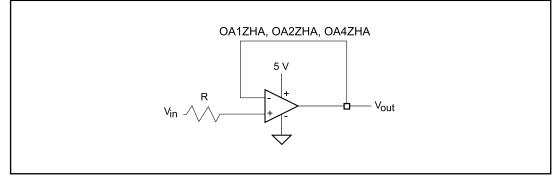


Figure 42: Input current limitation

5.4 Rail-to-rail input

OA1ZHA, OA2ZHA and OA4ZHA CMOS op amp have a rail-to-rail input, and the input common mode range is extended from (V_{CC-}) - 0.1 V to (V_{CC+}) + 0.1 V.

5.5 Input offset voltage drift over temperature

The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using *Equation 1*.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \max \left| \frac{V_{io}(T) - V_{io}(25 \,^{\circ}\text{C})}{T - 25 \,^{\circ}\text{C}} \right|$$

where T = -40 °C and 125 °C.

The OA1ZHA, OA2ZHA and OA4ZHA CMOS datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.3.

5.6 Rail-to-rail output

The operational amplifier output levels can go close to the rails: to a maximum of 30 mV above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.

5.7 Capacitive load

Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an op amp might become unstable.

Generally, the unity gain configuration is the worst case for stability and the ability to drive large capacitive loads.

Figure 43: "Stability criteria with a serial resistor at VDD = 5 V" and *Figure 44:* "Stability criteria with a serial resistor at VDD = 1.8 V" show the serial resistor that must be added to the output, to make a system stable. *Figure 45:* "Test configuration for Riso" shows the test configuration using an isolation resistor, R_{iso}.

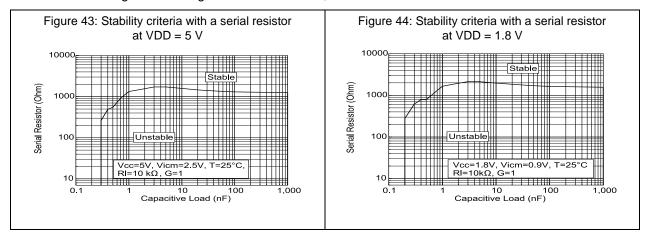
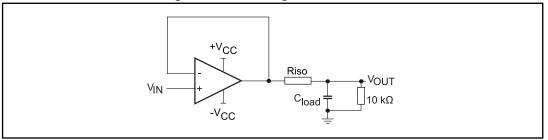



Figure 45: Test configuration for Riso

5.8 PCB layout recommendations

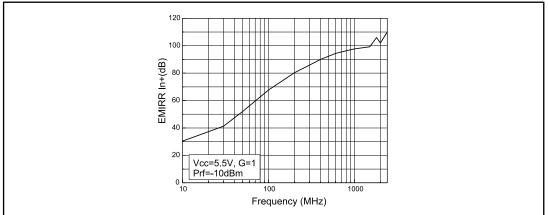
Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. Good practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance.

In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used.

The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance.

5.9 Optimized application recommendation

OA1ZHA, OA2ZHA and OA4ZHA CMOS op amp are based on chopper architecture. As they are switched devices, it is strongly recommended to place a 0.1 μ F capacitor as close as possible to the supply pins.

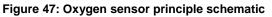

A good decoupling has several advantages for an application. First, it helps to reduce electromagnetic interference. Due to the modulation of the chopper, the decoupling capacitance also helps to reject the small ripple that may appear on the output.

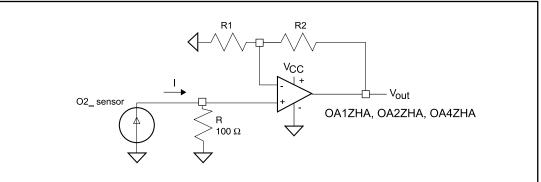
OA1ZHA, OA2ZHA and OA4ZHA CMOS op amp have been optimized for use with 10 k Ω in the feedback loop. With this, or a higher value of resistance, these devices offer the best performance.

5.10 EMI rejection ration (EMIRR)

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op amp is a change in the offset voltage as a result of RF signal rectification.

OA1ZHA, OA2ZHA and OA4ZHA CMOS op amp have been specially designed to minimize susceptibility to EMIRR and show an extremely good sensitivity. *Figure 46: "EMIRR on IN+ pin"* shows the EMIRR IN+ of the OA1ZHA, OA2ZHA and OA4ZHA measured from 10 MHz up to 2.4 GHz.


Figure 46: EMIRR on IN+ pin



5.11 Application examples

5.11.1 Oxygen sensor

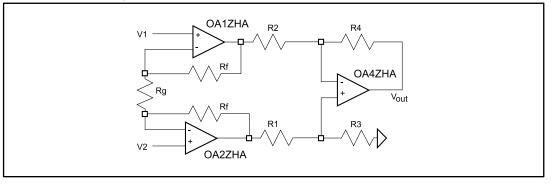
The electrochemical sensor creates a current proportional to the concentration of the gas being measured. This current is converted into voltage thanks to R resistance. This voltage is then amplified by OA1ZHA, OA2ZHA and OA4ZHA CMOS op amp (see *Figure 47: "Oxygen sensor principle schematic"*).

The output voltage is calculated using *Equation 2*:

Equation 2

$$V_{out} = (I \times R - V_{io}) \times \left(\frac{R_2}{R_1} + 1\right)$$

As the current delivered by the O2 sensor is extremely low, the impact of the V_{io} can become significant with a traditional operational amplifier. The use of the chopper amplifier of the OA1ZHA, OA2ZHA and OA4ZHA is perfect for this application.

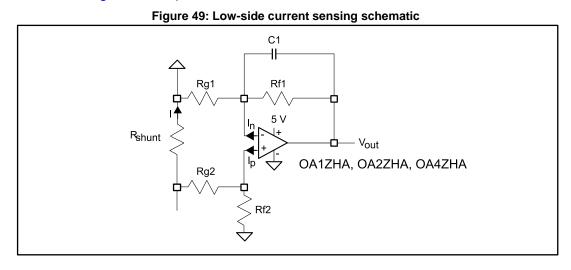

In addition, using OA1ZHA, OA2ZHA and OA4ZHA op amp for the O2 sensor application ensures that the measurement of O2 concentration is stable even at different temperature thanks to a very good $\Delta V_{io}/\Delta T$.

57

5.11.2 Precision instrumentation amplifier

The instrumentation amplifier uses three op amp. The circuit, shown in *Figure 48:* "*Precision instrumentation amplifier schematic*", exhibits high input impedance, so that the source impedance of the connected sensor has no impact on the amplification.

The gain is set by tuning the R_g resistor. With R1 = R2 and R3 = R4, the output is given by *Equation 3*.


Equation 3

$$V_{out} = (V_2 - V_1) \left[\frac{R_4}{R_2} \cdot \frac{2R_f}{R_g} + 1 \right]$$

The matching of R1, R2 and R3, R4 is important to ensure a good common mode rejection ratio (CMR).

5.11.3 Low-side current sensing

Power management mechanisms are found in most electronic systems. Current sensing is useful for protecting applications. The low-side current sensing method consists of placing a sense resistor between the load and the circuit ground. The resulting voltage drop is amplified using OA1ZHA, OA2ZHA and OA4ZHA CMOS op amp (see *Figure 49: "Low-side current sensing schematic"*).

V_{out} can be expressed as follows:

Equation 4

$$V_{out} = R_{shunt} \times I\left(1 - \frac{R_{g2}}{R_{g2} + R_{f2}}\right) \left(1 + \frac{R_{f1}}{R_{g1}}\right) + I_p \left(\frac{R_{g2} \times R_{f2}}{R_{g2} + R_{f2}}\right) \times \left(1 + \frac{R_{f1}}{R_{g1}}\right) - I_n \times R_{f1} - V_{io} \left(1 + \frac{R_{f1}}{R_{g1}}\right)$$

Assuming that $R_{f2} = R_{f1} = R_f$ and $R_{g2} = R_{g1} = R_g$, *Equation 4* can be simplified as follows: Equation 5

$$V_{out} = R_{shunt} \times I \left(\frac{R_f}{R_g} \right) - V_{io} \left(1 + \frac{R_f}{R_g} \right) + R_f \times I_{io}$$

The main advantage of using the chopper of the OA1ZHA, OA2ZHA and OA4ZHA, for a low-side current sensing, is that the errors due to V_{io} and I_{io} are extremely low and may be neglected.

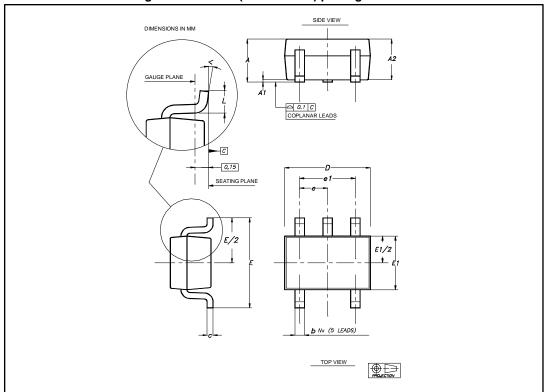
Therefore, for the same accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power dissipation, lower drop in the ground path, and lower cost.

Particular attention must be paid on the matching and precision of R_{g1} , R_{g2} , R_{f1} , and R_{f2} , to maximize the accuracy of the measurement.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 SC70-5 (or SOT323-5) package information



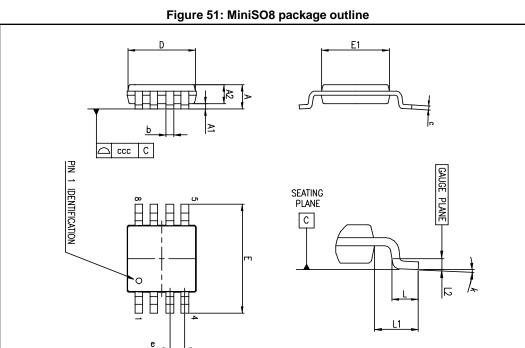

Figure 50: SC70-5 (or SOT323-5) package outline

Table 6: SC70-5 (or SOT323-5) mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.80		1.10	0.032		0.043			
A1			0.10			0.004			
A2	0.80	0.90	1.00	0.032	0.035	0.039			
b	0.15		0.30	0.006		0.012			
С	0.10		0.22	0.004		0.009			
D	1.80	2.00	2.20	0.071	0.079	0.087			
E	1.80	2.10	2.40	0.071	0.083	0.094			
E1	1.15	1.25	1.35	0.045	0.049	0.053			
е		0.65			0.025				
e1		1.30			0.051				
L	0.26	0.36	0.46	0.010	0.014	0.018			
<	0°		8°	0°		8°			

6.2 MiniSO8 package information

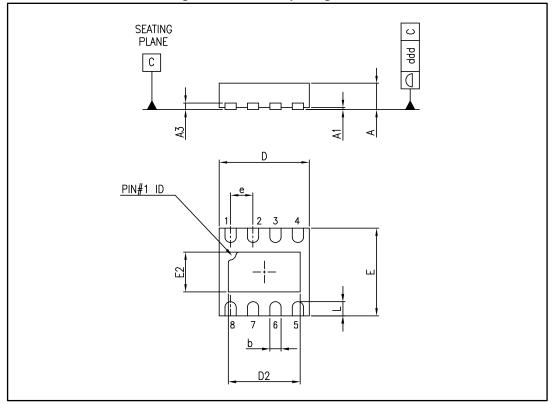


Table 7: MiniSO8 mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А			1.1			0.043			
A1	0		0.15	0		0.006			
A2	0.75	0.85	0.95	0.030	0.033	0.037			
b	0.22		0.40	0.009		0.016			
с	0.08		0.23	0.003		0.009			
D	2.80	3.00	3.20	0.11	0.118	0.126			
E	4.65	4.90	5.15	0.183	0.193	0.203			
E1	2.80	3.00	3.10	0.11	0.118	0.122			
е		0.65			0.026				
L	0.40	0.60	0.80	0.016	0.024	0.031			
L1		0.95			0.037				
L2		0.25			0.010				
k	0°		8°	0°		8°			
CCC			0.10			0.004			

6.3 DFN8 2x2 package information

Figure 52: DFN8 2x2 package outline

Table 8: DFN8 2x2 mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.51	0.55	0.60	0.020	0.022	0.024			
A1			0.05			0.002			
A3		0.15			0.006				
b	0.18	0.25	0.30	0.007	0.010	0.012			
D	1.85	2.00	2.15	0.073	0.079	0.085			
D2	1.45	1.60	1.70	0.057	0.063	0.067			
E	1.85	2.00	2.15	0.073	0.079	0.085			
E2	0.75	0.90	1.00	0.030	0.035	0.039			
е		0.50			0.020				
L	0.225	0.325	0.425	0.009	0.013	0.017			
ddd			0.08			0.003			

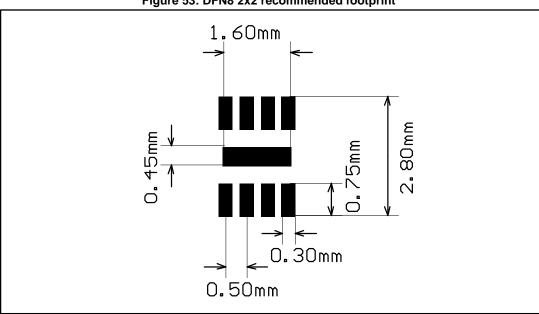
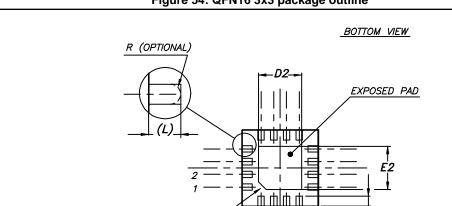
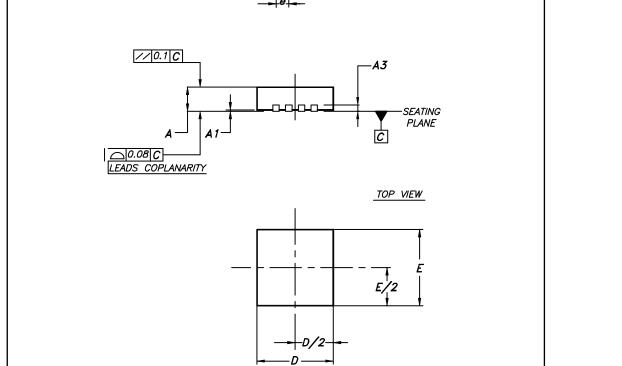



Figure 53: DFN8 2x2 recommended footprint



6.4 QFN16 3x3 package information

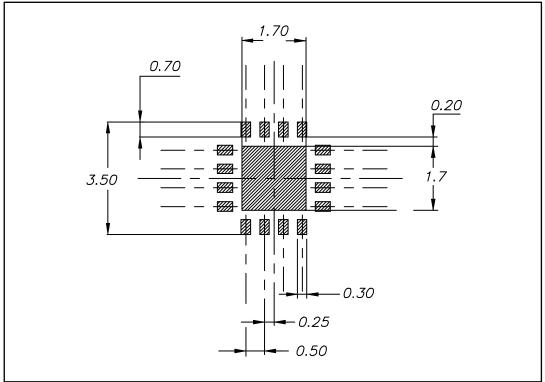
PIN 1

Figure 54: QFN16 3x3 package outline

L 16x

(4 LEADS PER SIDE)

b 16x



Package information

Table 9: QFN16 3X3 mechanical data									
	Dimensions								
Ref.	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.80	0.90	1.00	0.031	0.035	0.039			
A1	0		0.05	0		0.002			
A3		0.20			0.008				
b	0.18		0.30	0.007		0.012			
D	2.90	3.00	3.10	0.114	0.118	0.122			
D2	1.50		1.80	0.059		0.071			
Е	2.90	3.00	3.10	0.114	0.118	0.122			
E2	1.50		1.80	0.059		0.071			
е		0.50			0.020				
L	0.30		0.50	0.012		0.020			

Table 9: QFN16 3x3 mechanical data

7 Ordering information

Table 10: Order codes							
Order code	Temperature range	Package	Packaging	Marking			
OA1ZHA22C		SC70-5	Tape and reel	K44			
OA2ZHA34S	40 1- 405 00	MiniSO8		K208			
OA2ZHA22Q	-40 to 125 °C	DFN8 2x2		K33			
OA4ZHA33Q		QFN16 3x3		K193			

8 Revision history

Table 11: Document revision history

Date	Revision	Changes	
04-Mar-2014	1	Initial release.	
30-Jun-2016	2	Updated document layout Removed "Device summary" table from cover page and added information to <i>Table 10: "Order codes"</i> . <i>Section 6.4: "QFN16 3x3 package information"</i> : added recommended footprint. Added <i>Section 7: "Ordering information"</i> <i>Table 10: "Order codes"</i> : updated marking of MiniSO8 package.	
03-Aug-2017	3	Added minimum and typical dimension values for row L in <i>Table 8:</i> " <i>DFN8 2x2 mechanical data</i> ".	

OA1ZHA, OA2ZHA, OA4ZHA

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

561681F LT6005HGN#PBF LT6238CGN#PBF LT6238HGN#PBF OP05CN8#PBF OP227GN#PBF LT6020IDD-1#PBF LT1124CS8#TR NCV20166SN2T1G NCS20166SN2T1G NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMP8672MA/NOPB LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7715MFE/NOPB LMP7717MAE/NOPB LMV2011MA/NOPB TL034ACDR TLC2201AMDG4 TLE2024BMDWG4 TLV2474AQDRG4Q1 TLV2472QDRQ1 TLE2142MJGB TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR AD8619WARZ-R7 TLC272CD AD8539ARMZ LTC6084HDD#PBF LTC1050CN8#PBF LT1024CN#PBF LT1996AIDD#PBF